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Summary

REcombinatory Genome ENumeration of Subpopulations (REGENS) is an open source Python
package that simulates autosomal genotypes by concatenating real individuals’ genomic seg-
ments in a way that preserves their linkage disequilibrium (LD), which is defined as statistical
associations between alleles at different loci (Slatkin, 2008). Recombining segments in a way
that preserves LD simulates autosomes that closely resemble those of the real input popu-
lation (Shi, 2018) because real autosomal genotypes can be accurately modeled as genomic
segments from a finite pool of heritable association structures (LD haplotypes) (Druet, 2009).
REGENS can also simulate mono-allelic and epistatic single nucleotide variant (SNV) effects
of any order without perturbing the simulated LD pattern. The SNVs involved in an effect
can contribute additively, dominantly, recessively, only if heterozygous, or only if homozygous.
All simulated effects contribute to the value of either a binary or continuous biological trait
(phenotype) with a specified mean value and a specified amount of random noise.

Statement of need

The goal of most genome-wide association studies (GWAS) is to identify associations between
single nucleotide variants (SNVs) and a phenotype to inform researchers and clinicians about
potentially causative genetic factors. Completing this task will require overcoming numerous
challenges such as insufficient sample sizes and over-representation of European ancestries
(Torkamani et al., 2018). Computational biologists build machine learning models that look for
genetic associations in such unconventional datasets, but the majority of genetic associations
have yet to be discovered (Nolte, 2017). Researchers can use simulated datasets with known
ground truths to assess the effectiveness of an algorithm, such as the power to detect epistatic
effects with dimensionality reduction techniques (Moore, 2017). The more closely simulated
data matches real-world data, the more accurate such test results will be. Since humans of
different ancestry have different LD patterns (Eberle, 2006), a simulation that can replicate
those patterns from a small number of real samples is desirable. Therefore, intended users of
REGENS are computational biologists who aim to test a statistical learning model on simulated
GWAS data with precise realistic LD patterns.

Algorithm overview

Two genomic segments are said to be in low LD if alleles are approximately uncorrelated
between the two segments, which is guaranteed to occur if the boundary separating the
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segments has a sufficiently high recombination rate. If two genomic segments from randomly
sampled individuals are concatenated in silico at a boundary with a high recombination rate
(the position of which is referred to as a breakpoint from here on), then the LD pattern of
the resultant in-silico autosomal genotypes will change minimally (Shi, 2018). To illustrate
this point, let us let P (Ri = 1) be the probability of observing a recombination event at the
ith genomic position. The following holds:

P (Ri = 1) = 1× P (Ri = 1) + 0× P (Ri = 0) = E[Ri], (1)

hence,
P (Ri = 1)∑
i P (Ri = 1)

=
E[Ri]∑
i E[Ri]

. (2)

Drawing simulated breakpoints from the right hand side of (Equation 2) is like drawing dif-
ferently colored marbles from a jar. Just as the color composition inferred from drawing
(with replacement) a marble from a jar many times approaches the true distribution of colors,
the sample of simulated segment recombinations learned from drawing breakpoints for many
simulated individuals approaches the input population’s empirical distribution of real recom-
bination events. Genomic segments that only contain alleles in high LD are rarely separated
by breakpoints, which retains the original LD pattern (Figure 1).

Figure 1: Comparison of population whole genomes in 2 dimensional TSNE space.

Differentiating attributes

Many packages have been built to simulate genetic data with different goals in mind. Genetic
Architecture Model Emulator for Testing and Evaluating Software (GAMETEs) simulates sim-
ple and epistatic SNV/phenotype associations quickly but ignores LD patterns (Urbanowicz,
2012). Genome Simulation of Linkage and Association (GenomeSIMLA) uses forward time
simulation to produce broadly realistic LD patterns. However, these patterns do not exactly
match those of a particular dataset (Ritchie, 2015). Triadsim (Shi, 2018) replicates exact
LD patterns, but it requires (mother, father, kin) trios and takes an average CPU-time of
6.8 hours and an average peak RAM of 54.6 GB to simulate 10000 trios (20000 unrelated
GWAS samples) with 4 breakpoints. REGENS uses the same recombination principles that
Triadsim relies on, but it is 88.5 times faster (95% CI (75.1, 105.0) via bootstrapping) and re-
quires 6.2 times lower peak RAM (95% CI (6.04, 6.33) via bootstrapping) on average over 10
replicate simulations (Intel(R) Xeon(R) CPU E5-2690 v4 2.60GHz processor). REGENS also
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recombines individuals instead of trios to simulate GWAS data with small publicly available
genomic datasets, such as those in the 1000 Genomes project. This fact allows REGENS to
accurately simulate the full genetic diversity of the world’s population (representative figures
are in the supplementary analysis). Finally, REGENS can simulate continuous and binary
phenotypes that depend on any linear combination of products of f(SNV) values, where f
transforms the standard SNP values of {0, 1, 2} to represent nonlinear monoallelic effects
(such as dominance). Example implementations of these features are in REGENS’ GitHub
repository.

Supplementary analysis

Figures that demonstrate the similarity between real and simulated populations for all twenty-
six 1000 genomes populations, as well as the methods that were used to create those figures,
are here https://github.com/EpistasisLab/regens-analysis

Inspiration and dependencies

REGENS was inspired by Triadsim’s idea to draw simulated breakpoints at locations with
higher recombination rates, as well as well as by GAMETE’s objective of simulating data
quickly. REGENS relies on bed-reader, a spinoff of PySnpTools’s core .bed file code (Nicolo
Fusi., https://fastlmm.github.io/), to optimally read re-sampled rows from plink bed files as
8 bit integers and then write the 8 bit integer simulated autosomal genotypes into new bed
files. REGENS also relies on the 1000 genomes project’s whole genomes from 26 distinct
sub-populations (Gibbs, 2015), and it relies on those populations’ corresponding genome-wide
sex-averaged recombination rates inferred by the pyrho algorithm (Spence, 2019).
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