
GIMS: Graphical Interface for Materials Simulations
Sebastian Kokott1, Iker Hurtado1, Christian Vorwerk2, Claudia Draxl2,
Volker Blum3, and Matthias Scheffler1

1 The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society, Berlin, Germany
2 Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany 3
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC,
United States of America

DOI: 10.21105/joss.02767

Software
• Review
• Repository
• Archive

Editor: Jeff Gostick
Reviewers:

• @marshallmcdonnell
• @jgostick

Submitted: 06 October 2020
Published: 07 January 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Abstract

GIMS (Graphical Interface for Materials Simulations) is an open-source browser-based tool-
box for electronic-structure codes. It supports the generation of input files for first-principles
electronic-structure calculations and workflows, as well as the automated analysis and visual-
ization of the results. GIMS is deliberately extendable to enable support for any electronic-
structure code. Presently, it supports two different software packages: the numerical atom
centered orbital package FHI-aims and the LAPW code exciting.

Statement of Need

Common workflows for electronic-structure calculations require at least the following steps
1. Generating input files: This step includes the definition of structural data (e.g. posi-
tion of atoms) and numerical settings (e.g. basis-set quality, runtime choices, and numerical
convergence criteria). 2. Running the calculation(s): Based on the input files, the electronic-
structure code performs the requested calculation. Usually, each calculation produces several
output files. 3. Post-Processing: The output files are parsed, analyzed, and results are finally
visualized. Step 1 to 3 can be repeated and connected to workflows.
While step 2 is usually run by an ab initio engine on a remote HPC cluster, steps 1 and 3
can be executed on local machines. The electronic-structure community primarily uses the
command line interface and text editors as natural working environments, where workflows are
automated using scripts. Each of the above-mentioned steps adds its own technical complexity
and, thus, potential barriers for the user.
The objective of GIMS is to lower the entry barrier and to provide an easy-to-use, platform-
independent, zero-setup toolbox for standard tasks within the framework of first-principles
electronic-structure calculations. A running GIMS application can be found here: https:
//gims.ms1p.org. GIMS is intentionally written and designed to be easily extendable to any
electronic-structure code. At present, it supports the FHI-aims (Blum et al., 2009) and
exciting (Gulans et al., 2014) codes.

Software Architecture

The application is designed as web client-server system, but can be run entirely on a local
machine. The client side is responsible for the user interaction, file parsing, and data visu-
alization. The primary programming language is JavaScript. Conceptually, the web client is

Kokott et al., (2021). GIMS: Graphical Interface for Materials Simulations. Journal of Open Source Software, 6(57), 2767. https://doi.org/
10.21105/joss.02767

1

https://doi.org/10.21105/joss.02767
https://github.com/openjournals/joss-reviews/issues/2767
https://gitlab.com/gims-developers/gims
https://doi.org/10.5281/zenodo.4386436
http://pmeal.com
https://github.com/marshallmcdonnell
https://github.com/jgostick
http://creativecommons.org/licenses/by/4.0/
https://gims.ms1p.org
https://gims.ms1p.org
https://doi.org/10.21105/joss.02767
https://doi.org/10.21105/joss.02767


designed as a single page application: the client application is loaded at the outset and some
of the data it displays is dynamically updated at runtime by the server. The server has no
User Interaction (UI) logic nor does it maintain an UI state.
The server part is written in python. The communication between web application and web
server is realized by using the web server gateway interface (WSGI) framework Flask (Ronacher,
2010). Client requests are interfaced with the ASE package (Larsen et al., 2017) on the server
side. The ASE package provides python objects for the code-independent handling of atomic
structures (Atoms object) and numerical settings (Calculator). Thus, the use of ASE will
enable to extend GIMS’ functionalities to all codes (that is, by the time of writing more than 40
different codes) supported by ASE in a straightforward way. Moreover, we integrate spglib
(Togo & Tanaka, 2018) to obtain additional symmetry properties for periodic structures.

Overview of Features

GIMS is structured in terms of three separate elemental apps that address step 1 (input
generation) and step 3 (post-processing) described above. These apps also serve as building
blocks for workflows (see below). The current three elemental apps are:

1. Structure Builder. This app allows to import, view, manipulate, taking snapshots of,
and export structure files for various file formats. The 3D structure viewer is based
on the threejs library (Cabello, 2010). The builder enables a user to add, delete, and
change properties of atoms, as well as to analyze molecular and periodic structures
(e.g. measuring distances between two atoms, angles between three atoms, getting
symmetry information for periodic structures). This is a subset of capabilities as found,
e.g., in existing visualization and building tools such as Jmol, Avogadro (Hanwell et al.,
2012), and PyMol, but intrinsically designed as part of a broader client-server framework
in the case of GIMS.

2. Control Generator. Another step needed to set up a calculation is the selection of
numerical parameters. This process is highly specific to each electronic-structure code.
The control generator allows the user to provide the basic parameters for the selected
electronic-structure code. The user can select items from a form, where tool-tip help
provides code-specific information about the listed keywords. As a final product of this
step, the input file for the selected code is created and available for download.

3. Output Analyzer. After running the calculation, analysis and post-processing of the
output files are needed. The output analyzer facilitates some basic tasks, such as output
file identification (that is, automatically identifying the code the output files came from
and what kind of output files were provided), file parsing, visualization of the results
and numerical convergence of the calculations. Graphs can be interactively modified and
downloaded as png picture that can be directly used for a presentation or publication.

Workflow apps in GIMS combine different elemental apps. For instance, the band-structure
workflow proceeds as follows: First, the user selects the electronic-structure code with which
they want to carry out the corresponding band-structure calculation. Second, based on the
provided periodic structure and underlying Bravais lattice defined in the structure builder, the
correct band path is automatically determined (according to the Setyawan-Curtarolo conven-
tion (Setyawan & Curtarolo, 2010) as implemented in the ASE package). Third, mandatory
keywords to run a band structure calculation are pre-selected in the control generator. Fourth,
the band path is incorporated into the corresponding input file. Finally, all resulting output
files are processed and visualized by the output analyzer in the last step of the workflow.
Parsing and visualizing in- and output files in a browser based framework is also an integral part
of other projects that make use of electronic structure data, such as the materials databases

Kokott et al., (2021). GIMS: Graphical Interface for Materials Simulations. Journal of Open Source Software, 6(57), 2767. https://doi.org/
10.21105/joss.02767

2

https://www.python.org
https://flask.palletsprojects.com/en/1.1.x/
https://wiki.fysik.dtu.dk/ase/
https://spglib.github.io/spglib/
threejs.org
http://www.jmol.org/
https://avogadro.cc
https://pymol.org/2/
https://wiki.fysik.dtu.dk/ase/
https://doi.org/10.21105/joss.02767
https://doi.org/10.21105/joss.02767


NOMAD, AFLOW, and Materials Project. However, the GIMS workflow apps focuses also on
the generation of input files. Workflow apps help to make the user aware of potential pitfalls,
e.g., background sanity checks of the input files and cross checks among all input files (a
simple example would be to make it mandatory to define a k-grid when a periodic structure
is used).
The manual and a detailed description of all features are available at: https://gims-developers.
gitlab.io/gims. Both the client as well as server part are integration tested using jest and
pytest, respectively.

Acknowledgements

This work received funding from the European Union’s Horizon 2020 Research and Innovation
Programme (grant agreement No. 951786), the NOMAD CoE, MS1P e.V., and ERC:TEC1P
(No. 740233).

References

Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., & Scheffler, M.
(2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer
Physics Communications, 180(11), 2175–2196. https://doi.org/10.1016/j.cpc.2009.06.
022

Cabello, R. (2010). Three.js. In GitHub repository. GitHub. https://github.com/mrdoob/
three.js

Gulans, A., Kontur, S., Meisenbichler, C., Nabok, D., Pavone, P., Rigamonti, S., Sagmeister,
S., Werner, U., & Draxl, C. (2014). Exciting: A full-potential all-electron package imple-
menting density-functional theory and many-body perturbation theory. Journal of Physics:
Condensed Matter, 26(36), 363202. https://doi.org/10.1088/0953-8984/26/36/363202

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R.
(2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis plat-
form. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M.,
Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen,
P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard,
S., … Jacobsen, K. W. (2017). The atomic simulation environment — a python library
for working with atoms. Journal of Physics: Condensed Matter, 29(27), 273002. https:
//doi.org/10.1088/1361-648X/aa680e

Ronacher, A. (2010). Flask. In GitHub repository. GitHub. https://github.com/pallets/flask
Setyawan, W., & Curtarolo, S. (2010). High-throughput electronic band structure calculations:

Challenges and tools. Computational Materials Science, 49(2), 299–312. https://doi.org/
10.1016/j.commatsci.2010.05.010

Togo, A., & Tanaka, I. (2018). Preprint arXiv:1808.01590.

Kokott et al., (2021). GIMS: Graphical Interface for Materials Simulations. Journal of Open Source Software, 6(57), 2767. https://doi.org/
10.21105/joss.02767

3

https://nomad-lab.eu
http://aflowlib.org
https://materialsproject.org
https://gims-developers.gitlab.io/gims
https://gims-developers.gitlab.io/gims
https://jestjs.io
https://docs.pytest.org/en/latest/
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1016/j.cpc.2009.06.022
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1186/1758-2946-4-17
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://github.com/pallets/flask
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.21105/joss.02767
https://doi.org/10.21105/joss.02767

	Abstract
	Statement of Need
	Software Architecture
	Overview of Features
	Acknowledgements
	References

