kalepy: a Python package for kernel density estimation, sampling and plotting

Luke Zoltan Kelley¹, ²

¹ Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, USA
² Physics & Astronomy, Northwestern University, USA

DOI: 10.21105/joss.02784

Summary

‘Kernel Density Estimation’ or ‘KDE’ (Parzen, 1962; Rosenblatt, 1956) is a type of non-parametric density estimation (David W. Scott, 2015) that improves upon the traditional ‘histogram’ approach by, for example, i) utilizing the exact location of each data point (instead of ‘binning’), ii) being able to produce smooth distributions with continuous and meaningful derivatives, and iii) removing the arbitrary offset of an initial bin edge. The kalepy package presents a Python KDE implementation designed for broad applicability by including numerous features absent in other packages. kalepy provides optional weightings, reflecting boundary conditions, support for an arbitrary number of dimensions, numerous kernel (i.e., window) functions, built-in plotting, and built-in resampling.

Statement of need

Numerous Python KDE implementations exist, for example in scipy (scipy.stats.gaussian_kde) (Virtanen et al., 2020), seaborn (seaborn.kdeplot) (Waskom & team, 2020), GetDist (Lewis, 2019) and KDEpy (Odland, 2018). The scipy and seaborn tools are simple and accessible, but lack advanced functionality. The KDEpy package provides excellent performance on large numbers of data points and dimensions, but does not include resampling, boundary conditions, or plotting tools. The GetDist package offers extensive methods for plotting samples and utilizes numerous boundary treatments (Lewis, 2019), but lacks a standalone KDE interface or resampling functionality. kalepy provides convenient access to both plotting and numerical results in the same package, including multiple kernel functions, built-in resampling, boundary conditions, and numerous plotting tools for 1D, 2D, and N-dimensional ‘corner’ plots. kalepy is entirely class-based, and while focusing on ease of use, provides a highly extensible framework for modification and expansion in a range of possible applications.

While kalepy has no features specific to any particular field, it was designed for resampling from weighted astronomical datasets. Consider a population of binaries derived from cosmological simulations. If the initial population is costly to produce (e.g., requiring tens of millions of CPU hours), and as long as it accurately samples the parameter space of interest, it may be sufficiently accurate to produce larger populations by ‘resampling with variation,’ e.g., using a KDE approach. Depending on the details of the population, many of the parameters may be highly correlated and often abut a boundary: for example, the mass-ratio defined as the lower-mass component divided by the more massive component, is often highly correlated with the total mass of the binary, and is bounded to the unit interval i.e., $0 < q \equiv M_2/M_1 \leq 1$. Faithfully resampling from the population requires handling this discontinuity, while also preserving accurate covariances which may be distorted when transforming the variable, performing the KDE, and transforming back.
Methods

Consider a d dimensional parameter space, with N data points given by $x_i = (x_{i1}, x_{i2}, \ldots, x_{id})$, with $i = \{1, \ldots, N\}$. Each data point may have an associated ‘weight’ that is appropriately normalized, $\sum_i^N w_i = 1$. The kernel density estimate at a general position $x = (x_1, x_2, \ldots, x_N)$ can be written as,

$$\hat{f}_H(x) = \sum_{i=1}^N w_i K_H(x - x_i),$$

where the kernel is typically expressed as,

$$K_H(x) = \|H\|^{-1/2} K\left(H^{-1/2} x\right).$$

Here H is the ‘bandwidth’ (or covariance) matrix. Choosing the kernel and bandwidth matrix produces most of the nuance and art of KDE. The most common choice of kernel is likely the Gaussian, i.e.,

$$\hat{f}_H(x) = \sum_{i=1}^N \frac{w_i}{(2\pi)^{-d/2}\|H\|^{1/2}} \exp\{(x_j - x_{ij})H^{1/2} (x^k - x^k_i)\}. $$

In the current implementation, the Gaussian, tri-weight, and box-car kernels are implemented, in addition to the Epanechnikov kernel (Epanechnikov, 1969) which in some cases has been shown to be statistically optimal but has discontinuous derivatives that can produce both numerical and aesthetic problems. Often the bandwidth is chosen to be diagonal, and different rules-of-thumb are typically used to approximate a bandwidth that minimizes typical measures of error and/or bias. For example, the so-called ‘Silverman factor’ (Silverman, 1978) bandwidth,

$$H_{ij} = \delta_{ij}\sigma_i \left[\frac{4}{(d + 2)n}\right]^{1/(d+4)}$$

where δ_{ij} is the Kronecker delta, and σ_i is the standard deviation (or its estimate) for the ith parameter. In the current implementation, both the Silverman and Scott factor (David W. Scott, 1979) bandwidth estimators are included.

Reflecting boundary conditions can be used to improve reconstruction accuracy. For example, with data drawn from a log-normal distribution, a standard KDE will produce ‘leakage’ outside of the domain. To enforce the restriction that $f(x < 0) = 0$ (which must be known {a priori}), the kernel is redefined such that $K_H(x < 0) = 0$, and re-normalized to preserve unitarity\footnote{Note that some implementations instead truncate and renormalize the resulting \hat{f}_H which incorrectly redistributes probability from near the boundaries to the whole domain.}.

This example is shown in Figure 1, with histograms in the upper panel and KDEs on the bottom.

Resampling from the derived PDF can be done much more efficiently in the KDE framework than by the standard method of CDF inversion. In particular, we can see that sampling from the PDF is identical to re-sampling with replacement from the weighted data points, while shifting each point based on the PDF of the Kernel at that location.
Figure 1: Data drawn from a log-normal distribution is used to estimate the underlying PDF using histograms (upper) and KDEs (lower). The true distribution is shown in magenta. In the upper panel, the default bins chosen by matplotlib are especially uninsightful (blue), while custom bins misrepresent the distributions position when the initial edge is poorly chosen (red). The data is also included as a ‘carpet’ plot. In the lower panel, a Gaussian KDE with no reflection (blue) is compared to one with a reflection at $x = 0$, which better reproduces the true PDF. Data resampled from the reflecting-KDE PDF is shown as the blue ‘carpet’ points which closely resemble the input data.

kalepy has recently been used in astronomy and astrophysics, particularly in Siwek et al. (2020), Kelley (2020), Andrews (2020).

Acknowledgements

We acknowledge very helpful consultations on statistical nuances from Christopher Berry and Diego Muñoz. The support and ‘beta-testing’ performed by Magda Siwek and Jeff Andrews is also much appreciated. kalepy utilizes tools and functionality from numpy (Harris et al., 2020), matplotlib (Hunter, 2007), scipy (Virtanen et al., 2020), jupyter notebooks (ipython-2007; Kluyver et al., 2016), and corner (Foreman-Mackey, 2016).

References

