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Summary

‘Kernel Density Estimation’ or ‘KDE’ (Parzen, 1962; Rosenblatt, 1956) is a type of non-
parametric density estimation (David W. Scott, 2015) that improves upon the traditional
‘histogram’ approach by, for example, i) utilizing the exact location of each data point (instead
of ‘binning’), ii) being able to produce smooth distributions with continuous and meaningful
derivatives, and iii) removing the arbitrary offset of an initial bin edge. The kalepy package
presents a Python KDE implementation designed for broad applicability by including numerous
features absent in other packages. kalepy provides optional weightings, reflecting boundary
conditions, support for an arbitrary number of dimensions, numerous kernel (i.e., window)
functions, built-in plotting, and built-in resampling.

Statement of need

Numerous Python KDE implementations exist, for example in scipy (scipy.stats.gaussi
an_kde) (Virtanen et al., 2020), seaborn (seaborn.kdeplot) (Waskom & team, 2020), Get
Dist (Lewis, 2019) and KDEpy (Odland, 2018). The scipy and seaborn tools are simple and
accessible, but lack advanced functionality. The KDEpy package provides excellent performance
on large numbers of data points and dimensions, but does not include resampling, boundary
conditions, or plotting tools. The GetDist package offers extensive methods for plotting
samples and utilizes numerous boundary treatments (Lewis, 2019), but lacks a standalone KDE
interface or resampling functionality. kalepy provides convenient access to both plotting and
numerical results in the same package, including multiple kernel functions, built-in resampling,
boundary conditions, and numerous plotting tools for 1D, 2D, and N-dimensional ‘corner’
plots. kalepy is entirely class-based, and while focusing on ease of use, provides a highly
extensible framework for modification and expansion in a range of possible applications.
While kalepy has no features specific to any particular field, it was designed for resampling
from weighted astronomical datasets. Consider a population of binaries derived from cosmo-
logical simulations. If the initial population is costly to produce (e.g., requiring tens of millions
of CPU hours), and as long as it accurately samples the parameter space of interest, it may be
sufficiently accurate to produce larger populations by ‘resampling with variation,’ e.g., using a
KDE approach. Depending on the details of the population, many of the parameters may be
highly correlated and often abut a boundary: for example, the mass-ratio defined as the lower-
mass component divided by the more massive component, is often highly correlated with the
total mass of the binary, and is bounded to the unit interval i.e., 0 < q ≡ M2/M1 ≤ 1. Faith-
fully resampling from the population requires handling this discontinuity, while also preserving
accurate covariances which may be distorted when transforming the variable, performing the
KDE, and transforming back.
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Methods

Consider a d dimensional parameter space, with N data points given by xi = (xi1, xi2, ..., xid),
with i = {1, ..., N}. Each data point may have an associated ‘weight’ that is appropriately
normalized,

∑N
i wi = 1. The kernel density estimate at a general position x = (x1, x2, ..., xN )

can be written as,

f̂H(x) =

N∑
i=1

wiKH(x− xi),

where the kernel is typically expressed as,

KH(x) = ∥H∥−1/2K
(
H−1/2x

)
.

Here H is the ‘bandwidth’ (or covariance) matrix. Choosing the kernel and bandwidth matrix
produces most of the nuance and art of KDE. The most common choice of kernel is likely the
Gaussian, i.e.,

f̂H(x) =

N∑
i=1

wi

(2π)−d/2∥H∥1/2
exp{(xj − xij)H

j
k(x

k − xi
k)}.

In the current implementation, the Gaussian, tri-weight, and box-car kernels are implemented,
in addition to the Epanechnikov kernel (Epanechnikov, 1969) which in some cases has been
shown to be statistically optimal but has discontinuous derivatives that can produce both
numerical and aesthetic problems. Often the bandwidth is chosen to be diagonal, and dif-
ferent rules-of-thumb are typically used to approximate a bandwidth that minimizes typical
measures of error and/or bias. For example, the so-called ‘Silverman factor’ (Silverman, 1978)
bandwidth,

Hij = δijσi

[
4

(d+ 2)n

]1/(d+4)

(summation not implied),

where δij is the Kronecker delta, and σi is the standard deviation (or its estimate) for the ith
parameter. In the current implementation, both the Silverman and Scott factor (David W.
Scott, 1979) bandwidth estimators are included.
Reflecting boundary conditions can be used to improve reconstruction accuracy. For example,
with data drawn from a log-normal distribution, a standard KDE will produce ‘leakage’ outside
of the domain. To enforce the restriction that f(x < 0) = 0 (which must be known {a priori}),
the kernel is redefined such that KH(x < 0) = 0, and re-normalized to preserve unitarity1.
This example is shown in Figure 1, with histograms in the upper panel and KDEs on the
bottom.
Resampling from the derived PDF can be done much more efficiently in the KDE framework
than by the standard method of CDF inversion. In particular, we can see that sampling from
the PDF is identical to re-sampling with replacement from the weighted data points, while
shifting each point based on the PDF of the Kernel at that location.

1Note that some implementations instead truncate and renormalize the resulting f̂H which which incorrectly
redistributes probability from near the boundaries to the whole domain.
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Figure 1: Data drawn from a log-normal distribution is used to estimate the underlying PDF using
histgrams (upper) and KDEs (lower). The true distribution is shown in magenta. In the upper
panel, the default bins chosen by matplotlib are especially uninsightful (blue), while custom bins
misrepresent the distributions position when the initial edge is poorly chosen (red). The data is also
included as a ‘carpet’ plot. In the lower panel, a Gaussian KDE with no reflection (blue) is compared
to one with a reflection at x = 0, which better reproduces the true PDF. Data resampled from the
reflecting-KDE PDF is shown as the blue ‘carpet’ points which closely resemble the input data.

kalepy has recently been used in astronomy and astrophysics, particularly in Siwek et al.
(2020), Kelley (2020), Andrews (2020).
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