
s4rdm3x: A Tool Suite to Explore Code to Architecture
Mapping Techniques
Tobias Olsson1, Morgan Ericsson1, and Anna Wingkvist1

1 Department of Computer Science and Media Technology, Linnaeus University, Sweden
DOI: 10.21105/joss.02791

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @kinow
• @xirdneh

Submitted: 03 August 2020
Published: 07 February 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Architectural drift and erosion, where the implementation starts to deviate from the intended
software architecture or the rules set by it, are common problems in long-lived software systems.
This can be avoided by using techniques, such as Reflexion modeling (Murphy et al., 1995), to
validate that the implementation conforms to the indented architecture. Unfortunately, such
techniques require a mapping from source code modules (e.g., classes) to elements of the
architecture, something that is not always available or up to date. This is a known problem
when, e.g., companies want to adopt static architecture conformance checking; the effort to
manually create or bring this mapping up to date is just too time-consuming and error-prone
(Ali et al., 2017; Bittencourt et al., 2010).
The s4rdm3x tool suite is designed for researchers and practitioners to study and evaluate
algorithms that perform part of the mapping automatically, such as orphan-adoption clustering
(Christl et al., 2007) or information retrieval techniques (Bittencourt et al., 2010). It includes
a graphical user interface to define and run experiments with mapping algorithms and their
parameters, and visualize and explore the results of these experiments. The experiments can
be executed locally or in a remote high-performance computing environment. The tool suite
includes reference implementations of state of the art mapping algorithms and a set of Java
systems with validated mappings between classes and architecture elements. The tool suite
is extensible, so it is easy to add new mapping algorithms and visualizations to explore their
performance.

Statement of Need

To faciliate the further development and evaluiation of mapping techniques the software pro-
vides reference implementations of the current state-of-the-art mapping techniques and the
means to implement new techniques and run experiments. It includes the HuGMe orphan
adoption clustering method (Christl et al., 2007), and four attraction functions to decide
which architectural element a source code module should be mapped to: CountAttract
(Christl et al., 2007), IRAttract, LSIAttract (Bittencourt et al., 2010) and NBAttract
(Tobias Olsson et al., 2019). There is also a reference implementation of our novel technique
to create a textual representation of source code dependencies at an architectural level; Con-
crete Dependency Abstraction (CDA). It also contains a set of validated mappings between
source code classes and architectural elements that are often used in software architecture ero-
sion research. These systems have either been recovered from replication packages (Brunet
et al., 2012; Lenhard et al., 2019) or the SAEroCon workshop repository.

Olsson et al., (2021). s4rdm3x: A Tool Suite to Explore Code to Architecture Mapping Techniques. Journal of Open Source Software, 6(58),
2791. https://doi.org/10.21105/joss.02791

1

https://doi.org/10.21105/joss.02791
https://github.com/openjournals/joss-reviews/issues/2791
https://github.com/tobias-dv-lnu/s4rdm3x
https://doi.org/10.5281/zenodo.4475664
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/kinow
https://github.com/xirdneh
http://creativecommons.org/licenses/by/4.0/
https://github.com/sebastianherold/SAEroConRepo
https://doi.org/10.21105/joss.02791


The s4rdm3x Tool Suite

S4rdm3x is an extensible suite of tools for source code analysis, architecture definition, map-
ping of source code modules to architecture elements, experiment definitions, and exploratory
and visual analysis. The suite consists of an extensible core and two tools, a graphical editor
to create and visualize mapping experiments and a command-line tool to run experiment at
scale.

dmClass

dmDependency

CNode

CGraph

ArchDef

Component

MapperBase

IRMaperBase

HuGMe

NBMapper

ExperimentRunner

ExperimentRun

NBMapperExperimentRun

HuGMeExperimentRun

System ExperimentRunData

*

*

*

source, target

*

*
allowed dependenciesmapping by technique

mapping by definition

Figure 1: Overview of the s4rdm3x Core showing the implementation metamodel, and the mapper
and experiment subsystem

The core provides Java bytecode analysis to extract a dependency graph (and naming infor-
mation) as well as loading an architectural definition and source to module mapping. Figure
1 provides an overview of the important classes in the core and their main dependencies;
the three leftmost classes represent source code modules, and their implemented depen-
dencies contained as a graph and the architecture is represented by components and their
allowed dependencies. There is a rich set of dependencies that are extracted from (Java)
byte code, including the possibility to include implicit dependencies found via hard-coded
constants. The MapperBase class is used to implement different mapping strategies as sub-
classes. MapperExperiment provides functionality to set up and run mapping experiments
using combinations of random parameters at different intervals. An experiment is imple-
mented as a subclass of MapperExperiment that instantiates the corresponding subclasses
of MapperBase. This means that the mappers are not exclusive for experiments and can be
reused in other situations, e.g., in a tool that performs semi-automatic mapping as part of a
reflexion modeling approach.
The graphical editor is used to define, visualize, analyze, and compare how well mapping
algorithms perform with different parameters and initial sets of known mappings. It supports
a range of visualizations and can be extended with new ones. The editor uses an Immediate
Mode GUI approach, where the application renders the graphical primitives it needs (e.g., lines,
rectangles, and points) every frame, an approach often used in computer games and tools used
for computer game development since it offers fine-grained control over the visualization. This
fine-grained control makes it possible to extend the editor with custom visualizations. The
GUI uses OpenGL to provide hardware-accelerated rendering.
The graphical editor can be used to run experiments, but these generally require a large
number of combinations of, e.g., parameters, initial sets, and systems, so they can take a
long time to run. The suite includes a command-line tool that runs these combinations in
parallel on many-core machines. The command-line tool can read experiment definitions in
XML exported from the graphical editor and save the results in a format that can be imported
and visualized.
S4rdm3x is implemented in Java and depends on ASM, Weka, and Dear JVM ImGui.

Olsson et al., (2021). s4rdm3x: A Tool Suite to Explore Code to Architecture Mapping Techniques. Journal of Open Source Software, 6(58),
2791. https://doi.org/10.21105/joss.02791

2

https://opengl.org
https://asm.ow2.io
https://www.cs.waikato.ac.nz/ml/weka
https://github.com/kotlin-graphics/imgui
https://doi.org/10.21105/joss.02791


Applications

The S4rdm3x tool suite has been used in research studies on orphan adoption (T. Olsson et
al., 2018; Tobias Olsson et al., 2019) and as a continuous integration tool-chain for static
architecture conformance checking of student project submissions.

Acknowledgments

This work is supported by the Linnaeus University Centre for Data Intensive Sciences and
Applications (DISA) High-Performance Computing Center.

References

Ali, N., Baker, S., O’Crowley, R., Herold, S., & Buckley, J. (2017). Architecture consistency:
State of the practice, challenges and requirements. Empirical Software Engineering, 23(1),
1–35.

Bittencourt, R. A., Jansen de Souza Santos, G., Guerrero, D. D. S., & Murphy, G. C. (2010).
Improving automated mapping in reflexion models using information retrieval techniques.
IEEE Working Conference on Reverse Engineering, 163–172. https://doi.org/10.1109/
WCRE.2010.26

Brunet, J., Bittencourt, R. A., Serey, D., & Figueiredo, J. (2012). On the evolutionary
nature of architectural violations. Working Conference on Reverse Engineering, 257–266.
https://doi.org/10.1109/wcre.2012.35

Christl, A., Koschke, R., & Storey, M.-A. (2007). Automated clustering to support the
reflexion method. Information and Software Technology, 49(3), 255–274. https://doi.
org/10.1016/j.infsof.2006.10.015

Lenhard, J., Blom, M., & Herold, S. (2019). Exploring the suitability of source code metrics
for indicating architectural inconsistencies. Software Quality Journal, 27(1), 241–274.
https://doi.org/10.1007/s11219-018-9404-z

Murphy, G. C., Notkin, D., & Sullivan, K. (1995). Software reflexion models: Bridging the
gap between source and high-level models. ACM SIGSOFT Software Engineering Notes,
20(4), 18–28.

Olsson, Tobias, Ericsson, M., & Wingkvist, A. (2019). Semi-automatic mapping of source
code using naive bayes. Proceedings of the 13th European Conference on Software
Architecture-Volume 2, 209–216. https://doi.org/10.1145/3344948.3344984

Olsson, T., Ericsson, M., & Wingkvist, A. (2018). Towards improved initial mapping in semi
automatic clustering. Proceedings of the 12th European Conference on Software Archi-
tecture: Companion Proceedings, 51:1–51:7. https://doi.org/10.1145/3241403.3241456

Olsson et al., (2021). s4rdm3x: A Tool Suite to Explore Code to Architecture Mapping Techniques. Journal of Open Source Software, 6(58),
2791. https://doi.org/10.21105/joss.02791

3

https://lnu.se/forskning/sok-forskning/linnaeus-university-centre-for-data-intensive-sciences-and-applications
https://lnu.se/forskning/sok-forskning/linnaeus-university-centre-for-data-intensive-sciences-and-applications
https://doi.org/10.1109/WCRE.2010.26
https://doi.org/10.1109/WCRE.2010.26
https://doi.org/10.1109/wcre.2012.35
https://doi.org/10.1016/j.infsof.2006.10.015
https://doi.org/10.1016/j.infsof.2006.10.015
https://doi.org/10.1007/s11219-018-9404-z
https://doi.org/10.1145/3344948.3344984
https://doi.org/10.1145/3241403.3241456
https://doi.org/10.21105/joss.02791

	Summary
	Statement of Need
	The s4rdm3x Tool Suite
	Applications
	Acknowledgments
	References

