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Summary

Thermosteam is a thermodynamic engine capable of solving mass and energy balances, es-
timating mixture properties, solving thermodynamic phase equilibria, and modeling stoichio-
metric reactions. All chemical data in Thermosteam is imported from the chemicals library
(C. Bell & contributors, 2020), an open-source compilation of data and functions for the
estimation of pure component chemical and mixture properties. Thermosteam’s fast and flex-
ible platform has enabled the evaluation of conceptual and emerging biochemical production
processes. The Biorefinery Simulation and Techno-Economic Analysis Modules (BioSTEAM)
— capable of modeling reactors, distillation columns, heat exchangers, and other unit opera-
tions — has adopted Thermosteam as its premier thermodynamic engine (Cortés-Peña et al.,
2020). Published biorefinery designs modeled in BioSTEAM implement thermodynamic prop-
erty packages created with Thermosteam (BioSTEAM Development Group, 2020), including
a cornstover biorefinery for the production of cellulosic ethanol, a lipid-cane biorefinery for
the co-production of ethanol and biodiesel, and a wheatstraw biorefinery for the production
of cellulosic ethanol (Cortés-Peña et al., 2020; Sanchis-Sebastiá et al., 2020).

Statement of Need

The overarching goal of Thermosteam is to aid the rigorous design and simulation of chemical
production processes, whereby low value feedstocks are converted to high value products
via chemical reactions and thermodynamic-driven separations. For example, modeling the
separation of volatile chemicals from heavier ones in a distillation column (e.g., distilling
ethanol from water), requires vapor-liquid phase equilibrium calculations to predict how well
volatile chemicals selectively partition into the vapor phase. Additionally, fluid viscosities,
densities, and surface tensions are required to appropriately design a distillation column that
can achieve a specified recovery of chemicals (Green, 2018).
Several open-source libraries in Python have comparable capabilities to Thermosteam in the
estimation of fluid properties and phase equilibria: most notably Cantera and CoolProp.
Cantera is a collection of software tools capable of modeling kinetic reactions, thermodynamic
equilibrium, and mixture properties (Goodwin et al., 2018). Cantera’s built-in chemicals are
limited to 8, but new chemicals can be defined by users with flexibility on the amount of detail.
Thermosteam has yet to implement any features on kinetic reaction networks, but exposes
a larger set of roughly 20,000 built-in chemicals from the chemicals library. Users may
also define new models and pseudo-chemicals that are compatible with all of Thermosteam’s
features. CoolProp offers fast and accurate thermodynamic and transport properties for 122
chemical components, and can estimate phase equilibrium and mixture properties (I. H. Bell
et al., 2014). CoolProp also offers an interface to the NIST REFPROP software, which is
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considered the gold standard in thermophysical properties (Lemmon et al., 2018). It is within
Thermosteam’s roadmap to use CoolProp as part of its built-in models. While CoolProp
focuses on thermophysical chemical properties, Thermosteam also includes mass and energy
balances and stoichiometric reactions as one of its central features.

Roadmap

The main development items in Thermosteam’s roadmap concerns the implementation of fast,
robust, and accurate algorithms for estimating mixture properties and solving thermodynamic
phase equilibria. Through Thermosteam, BioSTEAM is able to evaluate a range of biofuels
and bioproducts, but further efforts on these development items would enable the evaluation
of a broader portfolio of potential bioproducts.
In Thermosteam, Peng Robinson is the default equation of state for all pure components.
However, the estimation of pure component chemical properties is not limited to solving the
equation of state. Several models of thermodynamic properties (e.g., density, heat capacity,
vapor pressure, heat of vaporization) are correlations that rely on fitted coefficients and key
chemical properties (e.g., critical temperature and pressure). To facilitate the calculation
of mixture properties, Thermosteam’s mixing rule estimates mixture properties by assuming
a molar weighted average of the pure chemical properties. However, Thermosteam aims
to implement rigorous equation of state (EOS) mixing rules for the estimation of mixture
properties.
Thermosteam allows for fast estimation of thermodynamic equilibrium within hundreds of mi-
croseconds through the smart use of cache and Numba just-in-time (JIT) compiled functions
(Lam et al., 2015). The main vapor-liquid equilibrium (VLE) algorithm solves the modified
Raoult’s law equation with activity coefficients estimated through UNIQUAC Functional-group
Activity Coefficients (UNIFAC) interaction parameters (Jürgen Gmehling et al., 2019). Mod-
ified Raoult’s law is suitable to estimate VLE of nonideal mixtures under low to moderate
pressures. At high to near-critical pressures, gaseous nonidealities become more significant.
In a near future, Thermosteam may also implement the Predictive Soave–Redlich–Kwong
(PSRK) functional group model for estimating phase equilibrium of critical mixtures.
All of Thermosteam’s application program interface (API) is documented with examples.
These examples also serve as preliminary tests that must pass before accepting any changes
to the software via continuous integration on Github. Additionally, the online documentation
includes a full tutorial that concludes with the creation of a property package. Thermostea
m’s powerful features and extensive documentation encourage users to become a part of its
community-driven platform and help it become more industrially and academically relevant.
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