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Summary

Studying the coordinated cell and tissue movements within confluent cell layers can give in-
sights into diverse biological phenomena, such as wound healing, cancer cell metastasis, and
host cell responses to infection. Cellular dynamics studies typically rely on analysis of time
lapse images, generated by live cell microscopy. As a result of recent progress in stem cell
and developmental biology, it is now often possible to generate confluent cell layers of primary
cells that recapitulate central features of intact tissues (Dutton et al., 2019). However, one
disadvantage of such primary cell model systems is that it remains technically challenging
to generate and image fluorescently labeled live samples. This complicates the use of seg-
mentation and single-particle tracking as a means to study cellular movements (Danuser &
Waterman-Storer, 2006). Consequently, optical flow-based analysis of bright field (black and
white) microscopy images provides a competitive method to extract cell dynamics information
from such sensitive and low-contrast experimental model systems (Vig et al., 2016). Because
the study of confluent cell layer dynamics lies at the intersection of biophysics and cell bi-
ology, two research communities with different emphasis on mathematics, there is a need
for a simple and easy-to-use framework that performs and visualizes Optical Flow analysis of
microscopy data. We here present Cellocity, a Python package for Optical Flow and Particle
Image Velocimetry (PIV) analysis, specifically catering to the bioimaging community.

Statement of need

To date, Optical Flow and PIV analysis of microscopy data has primarily relied on different
plugins for ImageJ, such as PIV analyser, or on MATLAB scripts (Vig et al., 2016). However,
these methods are limited in their accessibility, analysis capacity, metadata handling, and
data visualization capabilities. Optical Flow and PIV are commonly used in the fields of fluid
dynamics (Taylor et al., 2010) and computer vision (Bradski, 2000), and several open source
frameworks exist to service these communities, e.g., openPIV, JPIV and OpenCV (Bradski,
2000). A corresponding framework for bioimaging and cell biology applications has so far been
lacking.
Cellocity is an Python-based bioimage analysis tool for quantifying cell and tissue dynamics. It
has been developed as a flexible framework for researchers interested in investigating dynamic
behaviors within confluent cell layers, and to address the Optical Flow/PIV needs unique to
the microscopy community. Cellocity allows users to test and evaluate a diverse set of prepro-
cessing steps, analysis algorithms, packages, and parameters on their experimental data. It
provides a uniform programming interface to work with the many aspects in a cell dynamics
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analysis pipeline, from reading and preprocessing raw microscopy data, to creating flow visu-
alizations and figures with the help of Matplotlib (Hunter, 2007). Numpy (van der Walt et
al., 2011) is used extensively by Cellocity for array processing, OpenPIV-python (Liberzon et
al., 2020) provides the PIV analysis backbone, and the OpenCV implementation of Gunnar
Farenbäck’s optical flow algorithm (Farnebäck, 2003) is the basis of the optical flow analysis.
One unique feature of microscopy data is that the spatial resolution (pixel size) can be known
to a high degree of accuracy, and together with frame time-stamps this can be used to cal-
culate accurate flow velocities. A major problem when performing preprocessing of time lapse
microscopy data, for example through temporal median filtering, is that such operations some-
times can change the time interval between frames and/or the pixel size. Cellocity is by design
keeping track of and recalculating time and space units during operations, so as to not report
back erroneous output data to the user. It is possible to configure Cellocity to give output
in different units, such as µm/min or µm/h, depending on the time scale of the experiment
being analyzed. Moreover, Cellocity can calculate derived parameters, including the i) Instan-
taneous Order Parameter (Malinverno et al., 2017), ii) Alignment Index (Malinverno et al.,
2017), and/or iii) 5-sigma correlation length (Lång et al., 2018), and thereby provides the
user with a comprehensive tool box to describe confluent cell layer dynamics phenomena.

Validation of the software

To validate and test the different modules and components of Cellocity, a validation dataset
has been constructed. The dataset has been deposited in the BioStudies database under the
accession number S-BSST461. It is comprised of a collection of files that were generated by
translating and imaging a fixed monolayer of murine primary gut epithelium on a high-precision
linear microscope stage, using a wide selection of magnifications. 10 images were acquired with
the stage translated 1um in either the X, Y, or both directions simultaneously between frames.
The dataset is described in detail in the validation section of the Cellocity documentation.
Downloading this dataset allows users and contributors (to Cellocity and other software) to
validate and test their installations and custom modules against a standard, comprised of
real-world data where the flow is known and uniform, and the data has not been synthetically
generated, but has passed through the optical transfer function (OTF) of an actual microscope
setup.
The main advantages of Cellocity is its ability work on unlabeled Bright field time lapse
microscopy data, and to both quantify and visualize abstract Optical Flow analyses to the user.
Cellocity aims to make Optical Flow-based analysis of microscopy data easily accessible, by
providing a framework that keeps track of image metadata, performs common pre-processing
steps, and implements previously published analysis algorithms (Lång et al., 2018; Malinverno
et al., 2017). The architecture of Cellocity is designed with extensibility and modularity
in mind. Implementing new analysis modules, image readers, and visualizations is straight
forward with the help of Cellocity’s developer guide and API.
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