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Summary
Successful predictive modeling and control of engineering and natural processes is often entirely
determined by in situ measurements and feedback from sensors (S. L. Brunton & Kutz, 2019),
which provide measurements of the state of these processes at specific points in space and
time. However, deploying sensors into complex environments, including in application areas
such as manufacturing (Manohar, Hogan, et al., 2018), geophysical environments (Yildirim
et al., 2009), and biological processes (Colvert et al., 2017; Mohren et al., 2018), is often
expensive and challenging. Furthermore, modeling outcomes are extremely sensitive to the
location and number of these sensors, motivating optimization strategies for the principled
placement of sensors for different decision-making tasks. In general, choosing the globally
optimal placement within the search space of a large-scale complex system is an intractable
computation, in which the number of possible placements grows combinatorially with the
number of candidates (Ko et al., 1995). While sensor placement has traditionally been guided
by expert knowledge and first principles models, increases in system complexity, emerging
sensor technologies, and innovations in data-driven modeling strategies motivates automated
algorithms for optimizing sensor placements.
PySensors is a Python package for the scalable optimization of sensor placement from data.
In particular, PySensors provides tools for sparse sensor placement optimization approaches
that employ data-driven dimensionality reduction (B. W. Brunton et al., 2016; Manohar,
Brunton, et al., 2018). This approach results in near-optimal placements for various decision-
making tasks and can be readily customized using different optimization algorithms and ob-
jective functions.
The PySensors package can be used by both researchers looking to advance state-of-the-art
methods and practitioners seeking simple sparse sensor selection methods for their applications
of interest. Straightforward methods and abundant examples help new users to quickly and
efficiently leverage existing methods to their advantage. At the same time, modular classes
leave flexibility for users to experiment with and plug in new sensor selection algorithms or
dimensionality reduction techniques. Users of scikit-learn will find PySensors objects fa-
miliar, intuitive, and compatible with existing scikit-learn routines such as cross-validation
(Pedregosa et al., 2011).

Statement of need
Maximizing the impact of sensor placement algorithms requires tools to make them accessible
to scientists and engineers across various domains and at various levels of mathematical ex-
pertise and sophistication. PySensors unifies the algorithms developed in the papers (B. W.
Brunton et al., 2016; Clark et al., 2018; Manohar, Brunton, et al., 2018) and their accompa-
nying codes SSPOR_pub and SSPOC_pub into one software package. The only other packages
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in this domain of which we are aware are Chama (Klise et al., 2017) and Polire (Narayanan
et al., 2020). While these packages and PySensors all enable sparse sensor placement op-
timization, Chama and Polire are geared towards event detection and Gaussian processes
respectively, whereas PySensors is aimed at signal reconstruction and classification tasks. As
such, there are marked differences in the objective functions optimized by PySensors and its
precursors. In addition to these two packages, researchers and practitioners have made avail-
able various custom scripts for sensor placement. Currently, researchers seeking to employ
modern sensor placement methods must choose between implementing them from scratch or
manually augmenting existing unpolished codes.
Reconstruction and classification tasks often arise in the modeling, prediction, and control
of complex processes in geophysics, fluid dynamics, biology, and manufacturing. The goal
of reconstruction is to recover a high-dimensional signal x ∈ RN from a limited number of
p measurements yi = c⊤i x, where each ci ∈ RN represents the action of a sensor. For
example, c⊤i = [1, 0, 0, . . . , 0] represents a sensor which takes a point measurement of the
first dimension of the signal x. PySensors selects a set of p sensors out of N candidates
c⊤i (rows of a measurement matrix C : y = Cx) that minimize reconstruction error in a
data-dependent basis Φ ∈ RN×r

C⋆ = argmin
C∈Rp×N

∥x−Φ(CΦ)†y∥22,

where † denotes the Moore-Penrose pseudoinverse. The key innovation is to recover the low-
dimensional representation xr ∈ Rr satisfying x = Φxr via the reconstruction map Φ(CΦ)†,
ultimately reducing sensor placement to a highly efficient matrix pivoting operation (Manohar,
Brunton, et al., 2018). Similarly, sensor placement for classification (B. W. Brunton et al.,
2016) optimizes the sparsest vector s⋆ that reconstructs w : Φ†s = w in the low-dimensional
feature space, where w is the the set of weights learned by a linear classifier fit to xr. In this
case, the optimal sensor locations are determined by the nonzero components of s⋆.
The basis Φ is explicitly computed from the data using powerful dimensionality reduction
techniques such as principal components analysis (PCA) and random projections, which enable
significant compression of most signals to r ≪ N dimensions. PCA extracts the dominant
spatial correlations or principal components, the leading eigenvectors of the data covariance
matrix. It is computed using the matrix singular value decomposition (SVD) and is closely
related to proper orthogonal decomposition (POD); POD modes and principal components
are equivalent. Other basis choices are possible, such as dynamic mode decomposition for
extracting temporally correlated features (Manohar et al., 2019).

Features
PySensors enables the sparse placement of sensors for two classes of problems: reconstruction
and classification. For reconstruction problems the package implements a unified SensorSe
lector class, with methods for efficiently analyzing the effects that data or sensor quantity
have on reconstruction performance (Manohar, Brunton, et al., 2018). Sensor selection is
based on the computationally efficient QR algorithm. Often different sensor locations impose
variable costs, e.g. if measuring sea-surface temperature, it may be more expensive to place
buoys/sensors in the middle of the ocean than close to shore. These costs can be taken
into account during sensor selection via a built-in cost-sensitive optimization routine (Clark
et al., 2018). For classification tasks, the package implements the Sparse Sensor Placement
Optimization for Classification (SSPOC) algorithm (B. W. Brunton et al., 2016), allowing
one to optimize sensor placement for classification accuracy. The algorithm is related to
compressed sensing optimization (Baraniuk, 2007; Candès et al., 2006; Donoho, 2006), but
identifies the sparsest set of sensors that reconstructs a discriminating plane in a feature
subspace. This SSPOC implementation is fully general in the sense that it can be used in
conjunction with any linear classifier. Additionally, PySensors provides methods to enable
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straightforward exploration of the impacts of primary hyperparameters like the number of
sensors or basis modes.
It is well known (Manohar, Brunton, et al., 2018) that the basis in which one represents
measurement data can have a pronounced effect on the sensors that are selected and the quality
of the reconstruction. Users can readily switch between different bases typically employed for
sparse sensor selection, including POD modes and random projections. Because PySensors
was built with scikit-learn compatibility in mind, it is easy to use cross-validation to select
among possible choices of bases, basis modes, and other hyperparameters.
Finally, included with PySensors is a large suite of examples, implemented as Jupyter note-
books. Some of the examples are written in a tutorial format and introduce new users to
the objects, methods, and syntax of the package. Other examples demonstrate intermediate-
level concepts such as how to visualize model parameters and performance, how to combine
scikit-learn and PySensors objects, selecting appropriate parameter values via cross-
validation, and other best-practices. Further notebooks use PySensors to solve challenging
real-world problems. The notebooks reproduce many of the examples from the papers upon
which the package is based (B. W. Brunton et al., 2016; Clark et al., 2018; Manohar, Brun-
ton, et al., 2018). To help users begin applying PySensors to their own datasets even faster,
interactive versions of every notebook are available on Binder. Together with comprehensive
documentation, the examples will compress the learning curve of learning a new software
package.
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