
Omniscape.jl: Software to compute omnidirectional
landscape connectivity
Vincent A. Landau1, Viral B. Shah2, Ranjan Anantharaman3, and
Kimberly R. Hall4

1 Conservation Science Partners, Inc., Fort Collins, Colorado, United States 2 Julia Computing Inc.,
Cambridge, Massachusetts, United States 3 Massachusetts Institute of Technology, Cambridge,
Massachusetts, United States 4 The Nature Conservancy, Lansing, Michigan, United States

DOI: 10.21105/joss.02829

Software
• Review
• Repository
• Archive

Editor: Melissa Weber
Mendonça
Reviewers:

• @juliohm
• @tpoisot

Submitted: 22 October 2020
Published: 29 January 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Omniscape.jl is a software package that implements the Omniscape algorithm (McRae et al.,
2016) to compute landscape connectivity. It is written in the Julia programming language
(Bezanson et al., 2017) to be fast, scalable, and easy-to-use. Circuitscape.jl (Anantharaman
et al., 2020), the package on which Omniscape.jl builds and expands, abstracts landscapes
as two-dimensional electrical networks and solves for current flow. The current flow that
results represents landscape connectivity. Omniscape.jl is novel in that it produces maps of
“omni-directional” connectivity, which provide a spatial representation of connectivity between
every possible pair of start and endpoints in the landscape. These maps can be used by
researchers and landscape managers to understand and predict how ecological processes (e.g.,
animal movement, disease transmission, gene flow, and fire behavior) are likely to manifest
in geographic space. Omniscape.jl makes use of Julia’s native multi-threading, making it
readily scalable and deployable to high performance compute nodes. More information on the
broader Circuitscape project, which is home to Circuitscape.jl and Omniscape.jl, can be found
at circuitscape.org.

Motivation

Modeling where and how ecological processes are connected provides valuable information for
landscape management and researchers. A common output from connectivity modeling efforts
is a map that provides a spatial representation of connectivity by showing likely paths of flow
for ecological processes. A common method for identifying flow or movement corridors uses
graph-theory to identify least-cost paths (Bunn et al., 2000). The circuit-theoretic approach
to connectivity modeling was a more recent innovation, and it has been gaining popularity
over the past decade (Dickson et al., 2019; McRae, 2006; McRae et al., 2008). In the circuit-
theoretic approach, the landscape is abstracted as a network of current sources, grounds,
and resistors. The resulting current flow through the electrical network is then related to
the movement or flow intensity of the ecological process of interest. These models were
first implemented in the Circuitscape software package (Shah & McRae, 2008), which was
recently updated and rewritten as Circuitscape.jl (Anantharaman et al., 2020) in the Julia
programming language.
Circuitscape.jl is most often run in “pairwise” mode, where current flow is calculated between
pairs of user-defined “cores,” which are usually habitat patches. Results from this method
can be highly sensitive to the location of cores. This can be problematic in cases where
core location is arbitrary, or when there is uncertainty about where cores should be placed.

Landau et al., (2021). Omniscape.jl: Software to compute omnidirectional landscape connectivity. Journal of Open Source Software, 6(57),
2829. https://doi.org/10.21105/joss.02829

1

https://doi.org/10.21105/joss.02829
https://github.com/openjournals/joss-reviews/issues/2829
https://github.com/Circuitscape/Omniscape.jl
https://doi.org/10.5281/zenodo.4466323
http://mtm.ufsc.br/~melissa
http://mtm.ufsc.br/~melissa
https://github.com/juliohm
https://github.com/tpoisot
http://creativecommons.org/licenses/by/4.0/
https://circuitscape.org
https://doi.org/10.21105/joss.02829


The Omniscape algorithm (McRae et al., 2016) offers an alternative, “coreless” approach to
pairwise Circuitscape.jl and computes omni-directional landscape connectivity by implement-
ing Circuitscape.jl iteratively in a moving window. By precluding the need to identify and
delineate discrete cores, the Omniscape algorithm also allows for a more detailed evaluation
of connectivity within natural areas that may otherwise be defined as cores in Circuitscape.
Code for Python was developed to implement the Omniscape algorithm in McRae et al.
(2016), but a user-friendly software package was not available. To fill this need, we developed
Omniscape.jl, an easy-to-use software package written in Julia. Omniscape.jl is useful for
modeling connectivity in landscapes that do not have discrete cores, for example landscapes
that are a combination of natural, semi-natural, and human-modified lands, or in cases where
understanding connectivity within natural areas is of interest.

The Omniscape Algorithm

Omniscape.jl works by applying Circuitscape.jl iteratively through the landscape in a circular
moving window with a user-specified radius (Figure 1). Omniscape.jl requires two basic spatial
data inputs: a resistance raster, and a source strength raster. The resistance raster defines
the traversal cost (measured in ohms) for every pixel in the landscape, that is, the relative cost
for the ecological process of interest to move through each pixel. The source strength raster
defines for every pixel the relative amount of current (measured in amperes) to be injected
into that pixel. In the case of modeling animal movement, a pixel with a high source strength
corresponds to relatively more individuals originating from that pixel.

Figure 1: A diagram of the moving window used in Omniscape.jl, adapted with permission from
McRae et al. (2016).

The algorithm works as follows:

1. The circular window centers on a pixel in the source strength surface that has a source

Landau et al., (2021). Omniscape.jl: Software to compute omnidirectional landscape connectivity. Journal of Open Source Software, 6(57),
2829. https://doi.org/10.21105/joss.02829

2

https://doi.org/10.21105/joss.02829


strength greater than 0 (or a user-specified threshold). This is referred to as the target
pixel.

2. The source strength and resistance rasters are clipped to the circular window centered
on the target pixel.

3. Every source strength pixel within the search radius that also has a source strength
greater than 0 is identified. These are referred to as the source pixels.

4. Circuitscape.jl is run using the clipped resistance raster in “advanced” mode, where the
target pixel is set to ground, and the source pixels are set as current sources. The total
amount of current injected is equal to the source strength of the target pixel, and is
divvied up among the source pixels in proportion to their source strengths.

Steps 1-4 are repeated for every potential target pixel. The resulting current maps from
each moving window iteration are summed to get a final map of cumulative current flow.
Individual moving window iterations can be run independently. Omniscape.jl makes use of
Julia’s multi-threaded parallel processing to solve individual moving windows in parallel.
In addition to cumulative current, Omniscape.jl also optionally provides two additional out-
puts: flow potential, and normalized cumulative current (Figure 2). Flow potential represents
current flow under “null” resistance conditions and demonstrates what current flow would
look like when unconstrained by resistance and barriers. Flow potential is calculated exactly
as cumulative current flow, but with resistance set to one for the entire landscape. Normalized
cumulative current flow is calculated by dividing cumulative current flow by flow potential.
Normalized current helps identify areas where current is impeded or channelized (e.g., more
or less current than expected under null resistance conditions). High values mean current flow
is channelized, and low values mean current is impeded.

Figure 2: An example of the three different Omniscape.jl outputs. Outputs are from the Maryland
forest connectivity example in the software documentation. Cumulative current flow shows the total
current for each landscape pixel. Flow potential shows predicted current under resistance-free condi-
tions. Normalized current shows the degree to which a pixel has more or less current than expected
under resistance-free conditions (cumulative current flow divided by flow potential). Each layer is
visualized using a quantile stretch with 30 breaks. Axes show easting and northing coordinates for
reference.

Usage

Omniscape.jl is run from the Julia REPL. It offers a single user-facing function, run_omnisc
ape, which has two methods. The first method accepts a single argument specifying the path
to an INI file that contains input data file paths and run options. Spatial data inputs can be in
either ASCII or GeoTIFF raster formats, and outputs can also be written in either format. The

Landau et al., (2021). Omniscape.jl: Software to compute omnidirectional landscape connectivity. Journal of Open Source Software, 6(57),
2829. https://doi.org/10.21105/joss.02829

3

https://en.wikipedia.org/wiki/INI_file
https://doi.org/10.21105/joss.02829


second method of run_omniscape accepts arrays representing resistance and other spatial
data inputs, and a dictionary of arguments specifying algorithm options. A complete user guide
for Omniscape.jl, including installation instructions, function documentation, examples, and a
complete list of options and their defaults, can be found in the Omniscape.jl documentation.

Acknowledgments

Development of this software package was made possible by funding from NASA’s Ecological
Forecasting program (grant NNX17AF58G) and the Wilburforce Foundation. This software
package would not have been possible without Brad McRae (1966-2017), the visionary be-
hind Circuitscape, the Omniscape algorithm, and several other software tools for assessing
connectivity. Aaron Jones developed the diagram in Figure 1. Aaron Jones, Carrie Schloss,
Melissa Clark, Jim Platt, and early Omniscape.jl users helped steer software development by
providing valuable feedback and insight.

References

Anantharaman, R., Hall, K., Shah, V. B., & Edelman, A. (2020). Circuitscape in Julia:
High performance connectivity modelling to support conservation decisions. JuliaCon
Proceedings, 1(1), 58. https://doi.org/10.21105/jcon.00058

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Bunn, A. G., Urban, D. L., & Keitt, T. H. (2000). Landscape connectivity: A conservation
application of graph theory. Journal of Environmental Management, 59(4), 265–278.
https://doi.org/10.1006/jema.2000.0373

Dickson, B. G., Albano, C. M., Anantharaman, R., Beier, P., Fargione, J., Graves, T. A.,
Gray, M. E., Hall, K. R., Lawler, J. J., Leonard, P. B., & others. (2019). Circuit-theory
applications to connectivity science and conservation. Conservation Biology, 33(2), 239–
249. https://doi.org/10.1111/cobi.13230

McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551–1561. https://doi.org/
10.1111/j.0014-3820.2006.tb00500.x

McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to
model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712–2724.
https://doi.org/10.1890/07-1861.1

McRae, B. H., Popper, K., Jones, A., Schindel, M., Buttrick, S., Hall, K. R., Unnasch, R. S.,
& Platt, J. (2016). Conserving nature’s stage: Mapping omnidirectional connectivity for
resilient terrestrial landscapes in the pacific northwest. The Nature Conservancy, Portland,
Oregon. https://doi.org/10.13140/RG.2.1.4158.6166

Shah, V. B., & McRae, B. H. (2008). Circuitscape: A tool for landscape ecology. Proceedings
of the 7th Python in Science Conference, 7, 62–66.

Landau et al., (2021). Omniscape.jl: Software to compute omnidirectional landscape connectivity. Journal of Open Source Software, 6(57),
2829. https://doi.org/10.21105/joss.02829

4

https://docs.circuitscape.org/Omniscape.jl/latest/
https://doi.org/10.21105/jcon.00058
https://doi.org/10.1137/141000671
https://doi.org/10.1006/jema.2000.0373
https://doi.org/10.1111/cobi.13230
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.1890/07-1861.1
https://doi.org/10.13140/RG.2.1.4158.6166
https://doi.org/10.21105/joss.02829

	Summary
	Motivation
	The Omniscape Algorithm
	Usage
	Acknowledgments
	References

