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Summary

Oscillatory differential equations are ubiquitous in physics, chemistry and beyond. They arise
in quantum mechanics, electrical circuitry, suspension systems, molecular dynamics, and in
models of gravitational and electromagnetic waves. The numerical solution of such systems
however can be a computational bottleneck when tackled with conventional methods available
from numerical libraries.
We present (py)oscode, a general-purpose numerical routine for solving a class of highly
oscillatory ordinary differential equations (ODEs) efficiently. The package has been designed
to solve equations which describe a single harmonic oscillator with a time-dependent frequency
and damping term, i.e. are of the form

y′′ + 2γ(x)y′ + ω2(x)y = 0. (1)

The frequency ω(x) and damping γ(x) terms do not need to be explicit functions of x (they
can instead be e.g. the result of another numerical solution of an ODE), as they are supplied
as sequences ωj , γj evaluated at xi ≤ xj ≤ xf , where (xi, xf ) is the integration range.
(py)oscode is written in C++, but comes with a Python wrapper. Its Python interface
was designed to be similar to those included in SciPy’s (Virtanen et al., 2020) numerical
ODE solution modules. This is demonstrated in the example below whose output is shown in
Figure 1.

import numpy as np
import scipy.special as sp
import pyoscode

# Set up the Airy equation as an example: y'' + xy = 0
xs = np.linspace(0,40.0,5000)
ws = np.sqrt(xs)
gs = np.zeros_like(xs)
# Initial conditions
xi = 1.0
xf = 40.0
yi = sp.airy(-xi)[0]
dyi = -sp.airy(-xi)[1]
# Get dense output at the following points
t_eval = np.linspace(15,35,600)
# Solve the equation
solution = pyoscode.solve(xs, ws, gs, xi, xf, yi, dyi, t_eval=t_eval)
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Figure 1: Numerical solution of the Airy equation, y′′ + xy = 0, with pyoscode. The increase in
step-size of pyoscode’s internal steps (orange dots) is due to the algorithm switching from using the
RK method to the WKB approximation in the presence of high-frequency oscillations. The orange
segment shows dense output, the solution at these points was computed at no additional evaluations
of terms in the differential equation.

Statement of need

Even if the terms in Equation 1 change slowly, if the frequency of oscillations in the solution is
high enough, standard numerical methods struggle to solve such equations quickly. Traditional
methods have to trace every oscillation in the solution, taking many steps in x at an enormous
computational cost. The algorithm underlying (py)oscode, published in Agocs, Handley, et
al. (2020) and based on W. J. Handley et al. (2016), can detect when the solution is oscillatory
and switch to a method based on an analytic approximation (Wentzel–Kramers–Brillouin,
WKB) suited for oscillatory functions, otherwise using a Runge–Kutta (RK) method. Using
the WKB approximation allows the algorithm to skip over several wavelengths of oscillation
in a single step, reducing the number of steps taken drastically. It adaptively updates its
step-size to keep the local numerical error within a user-specified tolerance. (py)oscode is
capable of producing a solution estimate at an arbitrary value of x, not just at its internal
steps, therefore it can be used to generate a “continuous” solution, or dense output (Agocs,
Hobson, et al., 2020).

Related research and software

(py)oscode’s development was motivated by the need for a significantly more efficient solver
for the evolution of early-universe quantum fluctuations. These perturbations are thought to
have been stretched to macroscopic scales by a phase of accelerated expansion of the universe
(cosmic inflation), to later become the large-scale structure we see today. To understand the
origins of structure it is therefore essential to model the perturbations and understand the
physics involved in inflation. (py)oscode has been used to speed up the numerical evolution
of quantum fluctuations in the early universe, enabling the exploration of models beyond the
standard model of cosmology (W. Handley, 2019). It served as inspiration for other numerical
methods aiming to extend the range of oscillatory ODEs to solve (Bamber & Handley, 2020).
The efficient solution of oscillatory ODEs is a long-standing numerical analysis problem with
many existing methods to handle certain sub-classes of equations. Examples include successful
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methods by Petzold (Petzold, 1981), reviewed in Petzold et al. (1997) with many references
therein, Iserles et al. (Condon et al., 2009, 2011; Deaño et al., 2017), and Bremer (Bremer,
2018a), with code available from Bremer (2018b).
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