
BVPy: A FEniCS-based Python package to ease the
expression and study of boundary value problems in
Biology.
Florian Gacon1, Christophe Godin1, and Olivier Ali∗1

1 Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale
Supérieure de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA; 46, allée d’Italie, 69364 LYON Cedex 07,
France.

DOI: 10.21105/joss.02831

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @IgorBaratta
• @chennachaos
• @finsberg

Submitted: 28 October 2020
Published: 21 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

BVPy is a python library to easily implement and study numerically Boundary Value Problems
(BVPs) and Initial Boundary Value Problems (IBVPs) through the Finite Element Method
(FEM). BVPy proposes an intuitive Application Programming Interface (API) to harness and
combine the core functionalities of three powerful libraries: FEniCS (Logg et al., 2012) provides
the core data structures and solving algorithms; Gmsh (Geuzaine & Remacle, 2009) defines
the domains and their meshing; and Meshio (Schlömer et al., 2020) handles data reading
and writing. Initially built in the context of developmental biology and morphomechanics,
its purpose is to enable all users, even with little to none experience in FEM, to quickly
and efficiently estimate the behavior of a wide variety of fields (scalars, vectors, tensors) on
biologically relevant structures, inspired by biophysical and biochemical processes (morphogene
patterning, active matter mechanics, active transports…). Despite this biological motivation,
the BVPy library has been implemented in an agnostic manner that makes it suitable for many
other scientific context.

Statement of need

FEMs are becoming an ubiquitous tool in many research areas and the need for a platform
accessible to a large audience of non-specialists is growing. Such platforms should: (i) provide
an easy access to top-tier, open source, existing libraries, usually restricted to expert users;
(ii) serve as a means for experienced researchers to communicate with and educate novices.
BVPy aims to fulfil these needs through a twofold strategy:

• Provide a high-level API to soften the learning curve of FEMs. So users with little
to none knowledge can parametrize, run and monitor simulations based on built-in
templates.

• Enable users experienced in FEM-based modeling to develop and fully customize de
novo templates that could, in turn, be used by non-specialists.

∗Corresponding Author

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

1

https://doi.org/10.21105/joss.02831
https://github.com/openjournals/joss-reviews/issues/2831
https://gitlab.com/oali/bvpy
https://doi.org/10.5281/zenodo.4590758
https://kevinmoerman.org
https://github.com/IgorBaratta
https://github.com/chennachaos
https://github.com/finsberg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02831

State of the field

Although an exhaustive inventory of the existing FEM solutions is far beyond the reach of
this paper, it is worth mentioning a few existing alternatives; especially in the context of
computational morphomechanics, in which BVPy has been developed.
Some FEM-frameworks provide GUI such as Sofa (Faure et al., 2012), FEBio (Maas et al.,
2012) or MorphoMechanX (see (Sapala et al., 2018) for example of use) the yet-to-be pub-
lished add-on to the MorphoGraphX software (Reuille et al., 2015). While such userfriendly
solutions are accessible to a wide range of users; their “monolithic” construction reduces ver-
satility and prevents more experienced users to tune them at will. Moreover, their code sources
are not always freely available.
Besides these GUI-based solutions, some “lighter” and more open frameworks, such as
FREEFEM (Hecht, 2012) or FEniCS (Logg et al., 2012) are also available. Such solutions
appear more versatile and opensource. But their use is usually restricted to people already
familiar with the theory of Finite Elements.
A gap currently exists between “closed,” userfriendly, softwares on one hand and “open,”
technical frameworks on the other. BVPy attempts to fill this gap. Our strategy was to harness
FEniCS richness into an intuitive and evolutive API. To that end, the library architecture maps
the conceptual mathematical components of BVPs to abstract classes built on FEniCS and
Gmsh core components (see the library general description below). From these abstract classes,
experienced users can implement concrete classes, dedicated to their very specific need. Once
implemented, these concrete classes can easily be instantiated and combined in a manner
that do not require specific FEM-related skills (see the Example of use below). Although the
library comes with a few of these concrete classes, covering classic equations (e.g. Poisson’s
and Helmholtz’s equations, linear elasticity and hyperelasticity, reaction-diffusion equations…);
the full potential of the library resides in its ability to integrate de novo classes addressing
genuine equations and problems.

Library general description

By definition, a BVP corresponds to a (set) differential equation(s) together with a set of
constraints defined on the boundaries of the integration domain, see Equation 1.

F (u,∇(u) . . .) = 0 in Ω

u(x) = uN (x) on ∂ΩN

∇(u(x)) = j(x) on ∂ΩD

(1)

The above formalization can be extended as follow in the case of first-order IBVPs (i.e. where
time derivatives are limited to first order):

∂tu = F (u,∇(u) . . .) in Ω

u(t0,x) = u0(x) on Ωt0

u(t,x) = uN (t,x) on ∂ΩN

∇(u(t,x)) = j(t,x) on ∂ΩD,

(2)

the integration domain and its boundaries can be split into one-dimension time-line and or-
thogonal spatial hyperplanes: Ω = [t0, t∞] × Ωt0 , ∂ΩN = [t0, t∞] × ∂Ωt0N and ∂ΩD =
[t0, t∞]× ∂Ωt0D. Assuming that the spatial hyperplane Ωt0 does not evolve with time, such
IBVPs can be implemented by coupling the resolution of time-dependent BVPs with time-
integration schemes.

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

2

https://doi.org/10.21105/joss.02831

Scope and range

In terms of equations: In its current version (1.0.0), BVPy can handle non-homogeneous
second order Partial Differential Equations (PDEs) with potentially non-linear first order terms
but linear higher order ones. The unknowns within these PDEs can be scalar fields, vector
fields or second-order tensor fields. Systems of coupled PDEs can be implemented. We
extended the initial notion of BVP to encompass IBVPs featuring first-order time derivatives,
as described by Equation 2.
In terms of domains: BVPy provides geometrical primitives to generate simple 2D and 3D
domains (rectangles, cubes, ellipoids, torus, …) as well as basic Constructive Solid Geometry
(CSG) functionalities (addition, substraction and intersection) to combine these primitives
into more complex geometries. The library can also handle triangulated, as well as piecewise-
polygonal, meshes generated elsewhere. In the current version, .txt , .ply and .obj files are
accepted as inputs. This versatility comes however with a drawback, for the domain generation
procedure is not yet compatible with parallelization processes.
In terms of boundary conditions: Classic Dirichlet and Neumann boundary conditions can
be implemented as well as combinations of these along the domain boundaries. Periodic
boundary conditions can also be defined.

Organization

BVPy has been developed and organized as close as possible to the BVP and IBVP math-
ematical formulations given in Equation 1 and Equation 2. The library is built around the
following key components, see Figure 1:

• Two main classes, named BVP and IBVP, that respectively encapsulate FEniCS imple-
mentations of Equation 1 & Equation 2.

• Three main modules, bvpy.domains, bvpy.vforms and bvpy.boundary_conditions
emulating the corresponding mathematical components of a bvp.

• A bvpy.solvers module where a collection of FEniCS-based linear and non-linear
solvers are available.

Besides these main components, the bvpy.utils module gathers some useful “housekeeping”
functions regrouped thematically into sub-modules, e.g. visu, io… See online documentation.

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

3

https://doi.org/10.21105/joss.02831

Figure 1: Representation of the main modules and submodules forming the BVPy library.

Example of use

The following example is loosely inspired by (Zhao et al., 2020). The idea is to estimate
the mechanical stress distribution within a 2D cross section of a pressurized plant tissue with
heterogeneous rigidity. The goal here is to illustrate how parsimonious, intuitive and yet
insightful, BVPy simulations can be.

from bvpy import *

domain definition and meshing
sepal = CustomPolygonalDomain.read("./sepal.ply", cell_size=.5, dim=2)
sepal.discretize()

instanciation of an heterogeneous linear elastic model
tissue_rigidities = {0: 100, 1: 300}
young_moduli = HeterogeneousParameter(sepal.cdata, tissue_rigidities)
elastic_response = LinearElasticForm(young=young_moduli, source=[0, 0],

plane_stress=True)

loading forces implemented as Neumann boundary conditions
inner_pressure = 1
pressure_forces = NormalNeumann(val=inner_pressure, boundary='all')

problem definition and resolution
prblm = BVP(sepal, elastic_response, pressure_forces)
prblm.solve(linear_solver='gmres', absolute_tolerance=1e-2)

stress field computation
displacement = prblm.solution
stress = elastic_response.stress(displacement)

The recorded results can be processed by third-party software, e.g. Figure 2 shows the visu-
alization of the corresponding stress field within the Paraview software.

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

4

https://doi.org/10.21105/joss.02831

Figure 2: Example of a stress field computed from an heterogeneous linear elastic model applied to a
piecewise polygonal domain. The epidermis layer has been assumed three times stiffer than the inner
tissues. A corresponding distinction can be seen within the computed stress field.

More examples are available in the tutorial section of the online documentation.

Acknowledgements

The authors would like to thank Guillaume Cerutti and Jonathan Legrand for their numerous
advices and their technical guidance during the maturation of this work.
This work was supported by the Inria grant ADT Gnomon.

References

Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H.,
Courtecuisse, H., Bousquet, G., Peterlik, I., & Cotin, S. (2012). SOFA: A Multi-Model
Framework for Interactive Physical Simulation. In Y. Payan (Ed.), Soft Tissue Biome-
chanical Modeling for Computer Assisted Surgery (Vol. 11, pp. 283–321). Springer.
https://doi.org/10.1007/8415_2012_125

Geuzaine, C., & Remacle, J. (2009). Gmsh: A 3‐D finite element mesh generator with
built‐in pre‐ and post‐processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. https://doi.org/10.1002/nme.2579

Hecht, F. (2012). New development in FreeFem++. J. Numer. Math., 20(3-4), 251–265.
https://freefem.org/

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

5

https://doi.org/10.1007/8415_2012_125
https://doi.org/10.1002/nme.2579
https://freefem.org/
https://doi.org/10.21105/joss.02831

Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated solution of differential equations by
the finite element method: The FEniCS book. Springer Publishing Company, Incorporated.
ISBN: 3642230989

Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for
Biomechanics. Journal of Biomechanical Engineering, 134(1), 011005. https://doi.org/
10.1115/1.4005694

Reuille, P. B. de, Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G. W., Schuepbach,
T., Tauriello, G., Bajpai, N., Strauss, S., Weber, A., Kiss, A., Burian, A., Hofhuis, H.,
Sapala, A., Lipowczan, M., Heimlicher, M. B., Robinson, S., Bayer, E. M., Basler, K.,
Koumoutsakos, P., … Smith, R. S. (2015). MorphoGraphX: A platform for quantifying
morphogenesis in 4D. eLife, 4. https://doi.org/10.7554/elife.05864

Sapala, A., Runions, A., Routier-Kierzkowska, A.-L., Gupta, M. D., Hong, L., Hofhuis, H.,
Verger, S., Mosca, G., Li, C.-B., Hay, A., Hamant, O., Roeder, A. H., Tsiantis, M.,
Prusinkiewicz, P., & Smith, R. S. (2018). Why plants make puzzle cells, and how their
shape emerges. eLife, 7, 2061. https://doi.org/10.7554/elife.32794

Schlömer, N., McBain, G. D., Luu, K., christos, Li, T., Keilegavlen, E., Ferrándiz, V. M.,
Barnes, C., Lukeš, V., Dalcin, L., eolianoe, Wagner, N., Jansen, M., Gupta, A., Müller, S.,
Woodsend, B., Krande, Schwarz, L., Blechta, J., … Harsch, J. (2020). Nschloe/meshio
v4.3.1 (Version v4.3.1) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.
4090832

Zhao, F., Du, F., Oliveri, H., Zhou, L., Ali, O., Chen, W., Feng, S., Wang, Q., Lü, S.,
Long, M., Schneider, R., Sampathkumar, A., Godin, C., Traas, J., & Jiao, Y. (2020).
Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening. Current
Biology. https://doi.org/10.1016/j.cub.2020.07.076

Gacon et al., (2021). BVPy: A FEniCS-based Python package to ease the expression and study of boundary value problems in Biology.. Journal
of Open Source Software, 6(59), 2831. https://doi.org/10.21105/joss.02831

6

https://worldcat.org/isbn/3642230989
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.7554/elife.05864
https://doi.org/10.7554/elife.32794
https://doi.org/10.5281/zenodo.4090832
https://doi.org/10.5281/zenodo.4090832
https://doi.org/10.1016/j.cub.2020.07.076
https://doi.org/10.21105/joss.02831

	Summary
	Statement of need
	State of the field
	Library general description
	Scope and range
	Organization
	Example of use

	Acknowledgements
	References

