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Summary

We introduce c-lasso, a Python package that enables sparse and robust linear regression
and classification with linear equality constraints. The underlying statistical forward model is
assumed to be of the following form:

y = Xβ + σϵ subject to Cβ = 0

Here, X ∈ Rn×d is a given design matrix and the vector y ∈ Rn is a continuous or binary
response vector. The matrix C is a general constraint matrix. The vector β ∈ Rd contains the
unknown coefficients and σ an unknown scale. Prominent use cases are (sparse) log-contrast
regression with compositional data X, requiring the constraint 1Td β = 0 (Aitchion & Bacon-
Shone, 1984) and the Generalized Lasso which is a special case of the described problem (see,
e.g, (James et al., 2020), Example 3). The c-lasso package provides estimators for inferring
unknown coefficients and scale (i.e., perspective M-estimators (Combettes & Müller, 2020a))
of the form

min
β∈Rd,σ∈R0

f (Xβ − y, σ) + λ ∥β∥1 subject to Cβ = 0

for several convex loss functions f(·, ·). This includes the constrained Lasso, the constrained
scaled Lasso, sparse Huber M-estimators with linear equality constraints, and constrained
(Huberized) Square Hinge Support Vector Machines (SVMs) for classification.

Statement of need

Currently, there is no Python package available that can solve these ubiquitous statistical
estimation problems in a fast and efficient manner. c-lasso provides algorithmic strategies,
including path and proximal splitting algorithms, to solve the underlying convex optimization
problems with provable convergence guarantees. The c-lasso package is intended to fill
the gap between popular Python tools such as scikit-learn which cannot solve these
constrained problems and general-purpose optimization solvers such as cvxpy that do not scale
well for these problems and/or are inaccurate. c-lasso can solve the estimation problems
at a single regularization level, across an entire regularization path, and includes three model
selection strategies for determining the regularization parameter: a theoretically-derived fixed
regularization, k-fold cross-validation, and stability selection. We show several use cases of
the package, including an application of sparse log-contrast regression tasks for compositional
microbiome data, and highlight the seamless integration into R via reticulate.
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Functionalities

Installation and problem instantiation

c-lasso is available on pip and can be installed in the shell using

pip install c-lasso

c-lasso is a stand-alone package and not yet compatible with the scikit-learn API. The
central object in the c-lasso package is the instantiation of a c-lasso problem.

# Import the main class of the package
from classo import classo_problem

# Define a c-lasso problem instance with default setting,
# given data X, y, and constraints C.
problem = classo_problem(X, y, C)

We next describe what type of problem instances are available and how to solve them.

Statistical problem formulations

Depending on the type of and the prior assumptions on the data, the noise ϵ, and the model
parameters, c-lasso allows for different estimation problem formulations. More specifically,
the package can solve the following four regression-type and two classification-type formula-
tions:

R1 Standard constrained Lasso regression:

min
β∈Rd

∥Xβ − y∥2 + λ ∥β∥1 subject to Cβ = 0

This is the standard Lasso problem with linear equality constraints on the β vector. The
objective function combines Least-Squares (LS) for model fitting with the L1-norm penalty
for sparsity.

# Formulation R1
problem.formulation.huber = False
problem.formulation.concomitant = False
problem.formulation.classification = False

R2 Constrained sparse Huber regression:

min
β∈Rd

hρ(Xβ − y) + λ ∥β∥1 subject to Cβ = 0

This regression problem uses the Huber loss hρ as objective function for robust model fitting
with an L1 penalty and linear equality constraints on the β vector. The default parameter ρ
is set to 1.345 (Huber, 1981).

# Formulation R2
problem.formulation.huber = True
problem.formulation.concomitant = False
problem.formulation.classification = False
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R3 Constrained scaled Lasso regression:

min
β∈Rd,σ∈R0

∥Xβ − y∥2

σ
+

n

2
σ + λ ∥β∥1 subject to Cβ = 0

This formulation is the default problem formulation in c-lasso. It is similar to R1 but
allows for joint estimation of the (constrained) β vector and the standard deviation σ in a
concomitant fashion (Combettes & Müller, 2020a, 2020b).

# Formulation R3
problem.formulation.huber = False
problem.formulation.concomitant = True
problem.formulation.classification = False

R4 Constrained sparse Huber regression with concomitant scale estimation:

min
β∈Rd,σ∈R0

(
hρ

(
Xβ − y

σ

)
+ n

)
σ + λ ∥β∥1 subject to Cβ = 0

This formulation combines R2 and R3 allowing robust joint estimation of the (constrained) β
vector and the scale σ in a concomitant fashion (Combettes & Müller, 2020a, 2020b).

# Formulation R4
problem.formulation.huber = True
problem.formulation.concomitant = True
problem.formulation.classification = False

C1 Constrained sparse classification with Square Hinge loss:

min
β∈Rd

n∑
i=1

l(yix
⊤
i β) + λ ∥β∥1 subject to Cβ = 0

where xi denotes the ith row of X, yi ∈ {−1, 1}, and l(·) is defined for r ∈ R as:

l(r) =

{
(1− r)2 if r ≤ 1

0 if r ≥ 1

This formulation is similar to R1 but adapted for classification tasks using the Square Hinge
loss with (constrained) sparse β vector estimation (Lee & Lin, 2013).

# Formulation C1
problem.formulation.huber = False
problem.formulation.concomitant = False
problem.formulation.classification = True
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C2 Constrained sparse classification with Huberized Square Hinge loss:

min
β∈Rd

n∑
i=1

lρ(yix
⊤
i β) + λ ∥β∥1 subject to Cβ = 0 .

This formulation is similar to C1 but uses the Huberized Square Hinge loss lρ for robust
classification with (constrained) sparse β vector estimation (Rosset & Zhu, 2007):

lρ(r) =


(1− r)2 if ρ ≤ r ≤ 1

(1− ρ)(1 + ρ− 2r) if r ≤ ρ

0 if r ≥ 1

This formulation can be selected in c-lasso as follows:

# Formulation C2
problem.formulation.huber = True
problem.formulation.concomitant = False
problem.formulation.classification = True

Optimization schemes

The problem formulations R1-C2 require different algorithmic strategies for efficiently solving
the underlying optimization problems. The c-lasso package implements four published
algorithms with provable convergence guarantees. The package also includes novel algorithmic
extensions to solve Huber-type problems using the mean-shift formulation (Mishra & Müller,
2019). The following algorithmic schemes are implemented:

• Path algorithms (Path-Alg): This algorithm follows the proposal in (Gaines et al., 2018;
Jeon et al., 2020) and uses the fact that the solution path along λ is piecewise-affine
(Rosset & Zhu, 2007). We also provide a novel efficient procedure that allows to derive
the solution for the concomitant problem R3 along the path with little computational
overhead.

• Douglas-Rachford-type splitting method (DR): This algorithm can solve all regression
problems R1-R4. It is based on Doulgas-Rachford splitting in a higher-dimensional
product space and makes use of the proximity operators of the perspective of the LS
objective (Combettes & Müller, 2020a, 2020b). The Huber problem with concomitant
scale R4 is reformulated as scaled Lasso problem with mean shift vector (Mishra &
Müller, 2019) and thus solved in (n + d) dimensions.

• Projected primal-dual splitting method (P-PDS): This algorithm is derived from
(Briceño-Arias & López Rivera, 2019) and belongs to the class of proximal splitting
algorithms, extending the classical Forward-Backward (FB) (aka proximal gradient
descent) algorithm to handle an additional linear equality constraint via projection. In
the absence of a linear constraint, the method reduces to FB.

• Projection-free primal-dual splitting method (PF-PDS): This algorithm is a special case
of an algorithm proposed in (Combettes & Pesquet, 2012) (Eq. 4.5) and also belongs
to the class of proximal splitting algorithms. The algorithm does not require projection
operators which may be beneficial when C has a more complex structure. In the absence
of a linear constraint, the method reduces to the Forward-Backward-Forward scheme.

The following table summarizes the available algorithms and their recommended use for each
problem:
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Path-Alg DR P-PDS PF-PDS
R1 use for large λ and

path computation
use for small λ possible use for complex

constraints
R2 use for large λ and

path computation
use for small λ possible use for complex

constraints
R3 use for large λ and

path computation
use for small λ - -

R4 - only option - -
C1 only option - - -
C2 only option - - -

The following Python snippet shows how to select a specific algorithm:

problem.numerical_method = "Path-Alg"
# Alternative options: "DR", "P-PDS", and "PF-PDS"

Computation modes and model selection

The c-lasso package provides several computation modes and model selection schemes for
tuning the regularization parameter.

• Fixed Lambda: This setting lets the user choose a fixed parameter λ or a proportion
l ∈ [0, 1] such that λ = l × λmax. The default value is a scale-dependent tuning
parameter that has been derived in (Shi et al., 2016) and applied in (Combettes &
Müller, 2020b).

• Path Computation: This setting allows the computation of a solution path for λ pa-
rameters in an interval [λmin, λmax]. The solution path is computed via the Path-Alg
scheme or via warm-starts for other optimization schemes.

• Cross Validation: This setting allows the selection of the regularization parameter λ via
k-fold cross validation for λ ∈ [λmin, λmax]. Both the Minimum Mean Squared Error
(or Deviance) (MSE) and the “One-Standard-Error rule” (1SE) are available (Hastie et
al., 2009).

• Stability Selection: This setting allows the selection of the λ via stability selection
(Combettes & Müller, 2020b; Lin et al., 2014; Meinshausen & Bühlmann, 2010). Three
modes are available: selection at a fixed λ (Combettes & Müller, 2020b), selection of
the q first variables entering the path (default setting), and of the q largest coefficients
(in absolute value) across the path (Meinshausen & Bühlmann, 2010).

The Python syntax to use a specific computation mode and model selection is exemplified
below:

# Example how to perform ath computation and cross-validation:
problem.model_selection.LAMfixed = False
problem.model_selection.PATH = True
problem.model_selection.CV = True
problem.model_selection.StabSel = False

# Example how to add stability selection to the problem instance
problem.model_selection.StabSel = True

Each model selection procedure has additional meta-parameters that are described in the
Documentation.
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Numerical benchmarks

To evaluate optimization accuracy and running time of the different algorithms available
in c-lasso, we provide micro-benchmark experiments which also include cvxpy, an open
source convex optimization software, for baseline comparison. All experiments have been
computed using Python 3.9.1 on a MacBook Air with a 1.8 GHz Intel Core i5 processor
and 8 Gb 1600 MHz DDR3 memory, operating on macOS High Sierra.
Figure 1 summarizes the results for the Path-Alg, DR, and P-PDS algorithms solving the
regression formulation R1 for different samples sizes n and problem dimensions p on synthetic
data (using c-lasso’s data generator). We observe that c-lasso’s algorithms are faster
and more accurate than the cvx baseline. For instance, for d = 500 features and n = 500
samples, the Path-Alg algorithm is about 70 times faster than cvx.

Figure 1: Average running times (left panel) of Path-Alg (blue), P-PDS (yellow), DR (green), and cvx
(red) at fixed λ = 0.1 and corresponding average objective function value differences (with respect to
the function value obtained by the Path-Alg solution as baseline) (right panel). Mean (and standard
deviation) running time is calculated over 20 data replications for each sample size/dimension scenario
(n, d). On a single data set, the reported running time of an algorithm is the average time of five
algorithm runs (to guard against system background process fluctuations).

The complete reproducible micro-benchmark is avaialable here.

Computational examples

Toy example using synthetic data

We illustrate the workflow of the c-lasso package on synthetic data using the built-in routine
random_data which enables the generation of test problem instances with normally distributed
data X, sparse coefficient vectors β, and constraints C ∈ Rk×d.
Here, we use a problem instance with n = 100, d = 100, a β with five non-zero components,
σ = 0.5, and a zero-sum contraint.
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from classo import classo_problem, random_data

n, d, d_nonzero, k, sigma = 100, 100, 5, 1, 0.5
(X, C, y), sol = random_data(

n, d, d_nonzero, k, sigma,
zerosum = True, seed = 123

)
print("Relevant variables : {}".format(numpy.nonzero(sol)[0]))

problem = classo_problem(X, y, C)

problem.formulation.huber = True
problem.formulation.concomitant = False
problem.formulation.rho = 1.5

problem.model_selection.LAMfixed = True
problem.model_selection.PATH = True
problem.model_selection.LAMfixedparameters.rescaled_lam = True
problem.model_selection.LAMfixedparameters.lam = 0.1

problem.solve()

print(problem.solution)

We use formulation R2 with ρ = 1.5, computation mode and model selections Fixed Lambda
with λ = 0.1λmax, Path computation, and Stability Selection (as per default).
The corresponding output reads:

Relevant variables : [43 47 74 79 84]

LAMBDA FIXED :
Selected variables : 43 47 74 79 84
Running time : 0.294s

PATH COMPUTATION :
Running time : 0.566s

STABILITY SELECTION :
Selected variables : 43 47 74 79 84
Running time : 5.3s

c-lasso allows standard visualization of the computed solutions, e.g., coefficient plots at
fixed λ, the solution path, the stability selection profile at the selected λ, and the stability
selection profile across the entire path.
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Figure 2: Visualizations after calling problem.solution

For this tuned example, the solutions at the fixed lambda and with stability selection recover
the oracle solution. The solution vectors are stored in problem.solution and can be directly
acccessed for each mode/model selection.

# Access to the estimated coefficient vector at a fixed lambda
problem.solution.LAMfixed.beta

Note that the run time for this d = 100-dimensional example for a single path computation
is about 0.5 seconds on a standard laptop.

Log-contrast regression on gut microbiome data

We next illustrate the application of c-lasso on the COMBO microbiome dataset (Combettes
& Müller, 2020b; Lin et al., 2014; Shi et al., 2016). Here, the task is to predict the Body Mass
Index (BMI) of n = 96 participants from d = 45 relative abundances of bacterial genera, and
absolute calorie and fat intake measurements. The code snippet for this example is available
in the README.md and the example notebook.

Figure 3: Stability selection profiles of problems R3/R4 on the COMBO data

Simpson et al., (2021). c-lasso - a Python package for constrained sparse and robust regression and classification. Journal of Open Source
Software, 6(57), 2844. https://doi.org/10.21105/joss.02844

8

https://github.com/Leo-Simpson/c-lasso/tree/master/examples/COMBO_data
https://github.com/Leo-Simpson/c-lasso/README.md
https://github.com/Leo-Simpson/c-lasso/blob/master/examples/example-notebook.ipynb
https://doi.org/10.21105/joss.02844


Stability selection profiles using formulation R3 (left) and R4(right) on the COMBO dataset,
reproducing Figure 5a in (Combettes & Müller, 2020b).

Calling c-lasso in R

The c-lasso package also integrates with R via the R package reticulate. We refer to
reticulate’s manual for technical details about connecting python environments and R. A
successful use case of c-lasso is available in the R package trac (Bien et al., 2020), enabling
tree-structured aggregation of predictors when features are rare.
The code snippet below shows how c-lasso is called in R to perform regression at a fixed λ
λ = 0.1λmax. In R, X and C need to be of matrix type, and y of array type.

problem <- classo$classo_problem(X = X, C = C, y = y)
problem$model_selection$LAMfixed <- TRUE
problem$model_selection$StabSel <- FALSE
problem$model_selection$LAMfixedparameters$rescaled_lam <- TRUE
problem$model_selection$LAMfixedparameters$lam <- 0.1
problem$solve()

# Extract coefficent vector with tidy-verse
beta <- as.matrix(map_dfc(problem$solution$LAMfixed$beta, as.numeric))
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