
BetaML: The Beta Machine Learning Toolkit, a
self-contained repository of Machine Learning algorithms
in Julia
Antonello Lobianco∗1, 2, 3, 4, 5, 6

1 Université de Lorraine 2 Université de Strasbourg 3 Institut des sciences et industries du vivant et
de l’environnement (AgroParisTech) 4 Centre national de la recherche scientifique (CNRS) 5
Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE) 6
Bureau d’économie théorique et appliquée (BETA)

DOI: 10.21105/joss.02849

Software
• Review
• Repository
• Archive

Editor: Yuan Tang
Reviewers:

• @ablaom
• @ppalmes

Submitted: 23 July 2020
Published: 30 April 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

A series of machine learning algorithms has been implemented and bundled together with
several “utility” functions in a single package for the Julia programming language. Currently,
algorithms are available in the areas of classification (perceptron, kernel perceptron, pegasos),
neural networks (feed-forward), clustering (kmeans, kmenoids, gmm, missing values imputa-
tion) and decision trees/random forests. Development of these algorithms started following
the theoretical notes of the MOOC class “Machine Learning with Python: from Linear Models
to Deep Learning” from MITx/edX.
This paper presents the motivations and the general approach of the package and gives an
overview of its organisation. We refer the reader to the package documentation for instructions
on how to use the various algorithms provided or to the MOOC notes available on GitHub
(Lobianco, 2020) for their mathematical backgrounds.

Motivations and objectives

BetaML provides one of the simplest way to run ML algorithms in Julia. While many pack-
ages already implement specific ML algorithms in Julia, these are fragmented across different
packages and often value performances more than usability. For example the popular Deep
Learning library Flux (Mike Innes, 2018), while extremely performant and flexible, adopts some
designing choices that for a beginner could appear odd, like avoiding the neural network object
from the training process, or requiring all parameters to be explicitly defined. In BetaML we
made the choice to allow the user to experiment with the hyper-parameters of the algorithms,
learning them one step at the time. Hence for most functions we provide reasonable default
parameters that can be overridden when needed. For example, modelling, training and col-
lecting predictions from a feed-forward artificial neural network with one hidden layer can be
as simple as:

using BetaML.Nn
mynn = buildNetwork([DenseLayer(nIn,nHidden),

DenseLayer(nHidden,nOut)],
squaredCost)

train!(mynn,xtrain,ytrain)
∗Corresponding author.

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

1

https://doi.org/10.21105/joss.02849
https://github.com/openjournals/joss-reviews/issues/2849
https://github.com/sylvaticus/BetaML.jl
https://doi.org/10.5281/zenodo.4730205
https://terrytangyuan.github.io/about/
https://github.com/ablaom
https://github.com/ppalmes
http://creativecommons.org/licenses/by/4.0/
https://sylvaticus.github.io/BetaML.jl/stable
https://doi.org/10.21105/joss.02849


ytrain_est = predict(mynn,xtrain)
ytest_est = predict(mynn,xtest)

While much better results can be obtained (in general) by scaling the variables and/or tuning
their activation functions, the training parameters or the optimisation algorithm, this code
snippet already runs the model using common practices like random mini-batches.
Still BetaML offers a fair level of flexibility. As we didn’t aim for heavy optimisation, we were
able to keep the API (Application Programming Interface) both beginner-friendly and flexible.
If a great level of flexibility can already be achieved by just employing the full set of model
parameters, the greatest flexibility is obtained by customising BetaML and writing, for ex-
ample, its own neural network layer type (by subclassing AbstractLayer), its own sam-
pler (by subclassing AbstractDataSampler) or its own mixture component (by subclassing
AbstractMixture). While the library is designed for Julia users, the documentation provides
examples for using the package from R or Python (thanks to JuliaCall (Li, 2019) and PyJulia
(Arakaki et al., 2020) respectively).
A few packages try to provide a common Julia framework of the various ML algorithms
available in Julia, like ScikitLearn.jl (St-Jean & Okon, 2020), AutoMLPipeline.jl (Palmes,
2020) or MLJ.jl (Blaom et al., 2019). They build up on existing Julia (and/or Python) ML
specialised packages. While avoiding the problem of “reinventing the wheel,” the wrapping
level may unintentionally introduces complications for the end-user, like the need to load the
models and learn framework-specific concepts as model or machine in MLJ or @pipeline
and fit_transform! in AutoMLPipeline.
We chose instead to bundle the main ML algorithms directly within the package. This offers
a complementary approach that we feel it is more beginner-friendly.
We believe that the BetaML flexibility and simplicity, together with the efficiency and usability
of a Just in Time compiled language like Julia and the convenience of having several ML
algorithms and data-science utilities all in the same package, will support the needs of that
community of students and researchers that, contrary to industrial practitioners or computer
science specialists, don’t necessarily need to work with very large datasets that don’t fit in
memory or algorithms that require distributed computation.

Package organisation

The BetaML toolkit is currently composed of 5 modules: Utils provides common data-science
utility functions to be used in the other modules, Perceptron supplies linear and non-linear
classifiers based on the classical Perceptron algorithm, Nn allows implementing and training
artificial neural networks, Clustering includes several clustering algorithms and missing
value attribution / collaborative filtering algorithms based on clustering and finally Trees
implements decision trees classifiers/regressors together with their most common ensemble
method, random forests.
All sub-module functionalities are re-exported at the root level, so the user doesn’t need to
deal with the sub-modules, but just load the main BetaML module.

The Utils module

The Utils module is intended to provide functionalities that are either: (a) used in other
modules but are not strictly part of that specific module’s logic (for example activation func-
tions would be most likely used in neural networks, but could be of more general usage); (b)

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

2

https://doi.org/10.21105/joss.02849


general methods that are used alongside the ML algorithms, e.g. to improve their predictions
capabilities; or (c) general methods to assess the goodness of fits of ML algorithms.
Concerning the fist category Utils provides “classical” activation functions (and their re-
spective derivatives) like relu, sigmoid, softmax, but also more recent implementations
like elu (Clevert et al., 2015), celu (Barron, 2017), plu (Nicolae, 2018), softplus (Glo-
rot et al., 2011) and mish (Misra, 2019). Kernel functions (radialKernel - aka “KBF,”
polynomialKernel), distance metrics (l1_distance - aka “Manhattan,” l2_distance,
l2²_distance, cosine_distance), and functions typically used to improve numerical sta-
bility (lse) are also provided with the intention to be available in the different ML algorithms.
Often ML algorithms work better if the data is normalised or dimensions are reduced to
those explaining the greatest extent of data variability. This is the purpose of the functions
scale and pca respectively. scale scales the data to µ = 0 and σ = 1, optionally skipping
dimensions that don’t need to be normalised (like categorical ones). The related function
getScaleFactors saves the scaling factors so that inverse scaling (typically for the predictions
of the ML algorithm) can be applied. pca performs Principal Component Analysis, where the
user can specify either the number of dimensions to retain or the maximum approximation
error that she/he is willing to accept, either ex-ante or ex-post, after having analysed the
distribution of the explained variance by number of dimensions. Other “general support”
functions provided are oneHotEncoder, batch, partition and crossValidation.
Concerning the last category, several functions are provided to assess the goodness of fit of a
single datapoint or of the whole dataset, whether the output of the ML algorithm is in Rn or
categorical. Notably, accuracy provides categorical accuracy given a probabilistic prediction
(as PMF) of a datapoint and ConfusionMatrix allows a detailed analysis of categorical
predictions.
Finally, the Bayesian Information Criterion bic and Akaike Information Criterion aic functions
can be used for regularisation.

The Perceptron module

It provides the classical Perceptron linear classifier, a kernelised version of it and “Pegasos”
(Shalev-Shwartz et al., 2011), a gradient-descent based implementation.
The basic Perceptron classifier is implemented in the perceptron function, where the user
can provide the initial weights and retrieve both the final and the average parameters of the
classifier. In kernelPerceptron the user can either pass one of the kernel implemented in
Utils or implement its own kernel function. pegasos performs the classification using a
basic stochastic descent method1. Finally predict predicts the binary label given the feature
vector and the linear coefficients or the error distribution as obtained by the kernel Perceptron
algorithm.

The Nn module

Artificial neural networks can be implemented using the functions provided by the Nn module.
Currently only feed-forward networks for regression or classification tasks are fully provided,
but more complex layers (convolutional, pooling, recursive, …) can be eventually defined and
implemented directly by the user. The instantiation of the layers required by the network can
be done indeed either using one of the layer provided (DenseLayer, DenseNoBiasLayer or
VectorFunctionLayer, the latter one being a parameterless layer whose activation function,
like softMax or pool1d, is applied to the ensemble of the neurons rather than individually

1We plan to generalise the Pegasos algorithm to use the optimisation algorithms implemented for neural
networks.

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

3

https://doi.org/10.21105/joss.02849


on each of them) or by creating a user-defined layer by subclassing the AbstractLayer type
and implementing the functions forward, backward, getParams, getGradient, setParams
and size.
While in the provided layers the computation of the derivatives for backward and getParams
is coded manually2, for complex user-defined layers the two functions can benefit of automatic
differentiation packages like Zygote(Michael Innes, 2018), eventually wrapped in the function
autoJacobian defined in Utils.
Once the layers are defined, the neural network is modelled by setting the layers in an array,
giving the network a cost function and a name. The show function can be employ to print
the structure of the network.
The training of the model is done with the highly parametrisable train! function. In a
similar way than for the definition of the layers, one can use for training one of the “standard”
optimisation algorithms provided (SGD and ADAM, Kingma & Ba (2014)), either using their
default values or by fine-tuning their parameters, or by defining the optimisation algorithm
by subclassing the AbstractOptimisationAlgorithm type and implementing the single
Update! and eventually initOptAlg! methods. Note that the singleUpdate! function
provides the algorithm with quite a large set of information from the training process, allowing
a wide class of optimisation algorithms to be implemented.

The Clustering module

Both the classical kmeans and kmedoids algorithms are provided (with the difference being
that the clusters “representatives” can be in any Rn point in kmeans, while are restricted
to be one of the data point in kmedoids), where different measure metrics can be provided
(either those defined in Utils or user-provided ones) as well as different initialisation strategies
(random, grid, shuffle or given).
Alongside these “hard clustering” algorithms, the Clustering module provides gmm, an imple-
mentation of the Expectation-Maximisation algorithm to estimate a generative mixture model,
with variance-free and variance-constrained Gaussian mixture components already provided
(and again, one can write his own mixture component by subclassing Mixture and imple-
menting initMixtures!, lpdf, updateParameters! and npar).
Notably the gmm function works also with missing input data either in one or all dimensions (and
in the former case parameter estimation will be based using only the available dimensions).
This, together with the probabilistic assignment nature of the em algorithm, allows it to be
used as base for missing values assignment or even collaborative filtering/recommandation
systems in the predictMissing function.

The Trees module

Like for the other modules the two algorithms provided by the Trees module (decision trees
and random forests) have an API that tries to maximise the flexibility and user-friendliness:
users can train a tree (forest) by just using buildTree(xtrain,ytrain) (buildForest(xt
rain,ytrain)) and then obtain the predictions with predict([trained tree or forest
object],ytrain).

2For the derivatives of the activation function the user can (a) provide one of the derivative functions
defined in Utils, (b) implement it by himself, or (c) just leave the library use automatic differentiation (using
Zygote) to compute it.

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

4

https://doi.org/10.21105/joss.02849


The nature of the task (classification or regression) is automatically determined by the numeri-
cal nature of the training labels but it can be overridden by the user, together with many other
parameters. Support for missing data and the direct usage of mixed categorical and numerical
dimensions in the data (without the need to encode the categories) make the algorithms of
the Trees module very convenient to use.

Acknowledgements

This work was supported by a grant overseen by the French National Research Agency (ANR)
as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence
ARBRE).

References

Arakaki, T., Bolewski, J., Deits, R., Fischer, K., Johnson, S. G., Bussonnier, M., Norton, I.,
Haraldsson, P., Rocklin, M., Tsur, Shah, V. B., Soto, D., eslgastal, Kuthe, E., jakirkham,
Millea, M., grahamgill, fnmdx111, Arslan, A., … scls19fr. (2020). JuliaPy/pyjulia: PyJulia.
Zenodo. https://doi.org/10.5281/zenodo.4294939

Barron, J. T. (2017). Continuously differentiable exponential linear units. https://arxiv.org/
abs/1704.07483https://arxiv.org/abs/1704.07483

Blaom, A., Kiraly, F., Lienart, T., & Vollmer, S. (2019). MLJ, a machine learning framework
for julia. Zenodo. https://doi.org/10.5281/zenodo.3541505

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (ELUs). https://arxiv.org/abs/1511.07289v5

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Pro-
ceedings of Machine Learning Research, 15, 315–323. http://proceedings.mlr.press/v15/
glorot11a/glorot11a.pdf

Innes, Michael. (2018). Don’t unroll adjoint: Differentiating SSA-form programs. https:
//arxiv.org/abs/1810.07951

Innes, Mike. (2018). Flux: Elegant machine learning with julia. Journal of Open Source
Software. https://doi.org/10.21105/joss.00602

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. https:
//arxiv.org/abs/1412.6980

Li, C. (2019). JuliaCall: An R package for seamless integration between R and Julia. The
Journal of Open Source Software, 4(35), 1284. https://doi.org/10.21105/joss.01284

Lobianco, A. (2020). Student’s notes (2020 run) of the MITx 6.86x course. GitHub repository.
https://github.com/sylvaticus/MITx_6.86x

Misra, D. (2019). Mish: A self regularized non-monotonic neural activation function. https:
//arxiv.org/abs/1908.08681

Nicolae, A. (2018). PLU: The piecewise linear unit activation function. http://arxiv.org/abs/
1809.09534

Palmes, P. (2020). AutoMLPipeline.jl: A package that makes it trivial to create and evaluate
machine learning pipeline architectures. GitHub repository. https://github.com/IBM/
AutoMLPipeline.jl

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

5

https://doi.org/10.5281/zenodo.4294939
https://arxiv.org/abs/1704.07483https://arxiv.org/abs/1704.07483
https://arxiv.org/abs/1704.07483https://arxiv.org/abs/1704.07483
https://doi.org/10.5281/zenodo.3541505
https://arxiv.org/abs/1511.07289v5
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1810.07951
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.21105/joss.01284
https://github.com/sylvaticus/MITx_6.86x
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1809.09534
http://arxiv.org/abs/1809.09534
https://github.com/IBM/AutoMLPipeline.jl
https://github.com/IBM/AutoMLPipeline.jl
https://doi.org/10.21105/joss.02849


Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical Programming, 127(1), 3–30. https://doi.org/
10.1007/s10107-010-0420-4

St-Jean, C., & Okon, S. (2020). ScikitLearn.jl: Julia implementation of the scikit-learn API.
GitHub repository. https://github.com/cstjean/ScikitLearn.jl

Lobianco, A., (2021). BetaML: The Beta Machine Learning Toolkit, a self-contained repository of Machine Learning algorithms in Julia. Journal
of Open Source Software, 6(60), 2849. https://doi.org/10.21105/joss.02849

6

https://doi.org/10.1007/s10107-010-0420-4
https://doi.org/10.1007/s10107-010-0420-4
https://github.com/cstjean/ScikitLearn.jl
https://doi.org/10.21105/joss.02849

	Summary
	Motivations and objectives
	Package organisation
	The Utils module
	The Perceptron module
	The Nn module

	The Clustering module
	The Trees module
	Acknowledgements
	References

