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Background

Astronomical observations and statistical modeling permit the high-fidelity analysis of strong
gravitational lensing (SL) systems, which display an astronomical phenomenon in which light
from a distant object is deflected by the gravitational field of another object along its path to
the observer. These systems are of great scientific interest because they provide information
about multiple astrophysical and cosmological phenomena, including the nature of dark mat-
ter, the expansion rate of the Universe, and characteristics of galaxy populations. They also
serve as standing tests of the theory of General Relativity and modified theories of gravity.
Traditional searches for SL systems have involved time- and effort-intensive visual or manual
inspection of images by humans to identify characteristic features — like arcs, particular color
combinations, and object orientations. However, a comprehensive search using the traditional
approach is prohibitively expensive for large numbers of images, like those in cosmological
surveys — e.g., the Sloan Digital Sky Survey (York et al., 2000), the Dark Energy Survey
(Abbott et al., 2018), and the Legacy Survey of Space and Time (LSST) (Ivezić et al.,
2019). To automate the SL detection process, techniques based on machine learning (ML) are
beginning to overtake traditional approaches for scanning astronomical images. In particular,
deep learning techniques have been the focus, but they require large sets of labeled images to
train these models. Because of the relatively low number of observed SL systems, simulated
datasets of images are often needed. Thus, the composition and production of these simulated
datasets have become integral parts of the SL detection process.
One of the premier tools for simulating and analyzing SL systems, lenstronomy (Birrer &
Amara, 2018), works by the user specifying the properties of the physical systems, as well
as how they are observed (e.g., telescope and camera) through a python-based application
programming interface (API) to generate a single image. Generating populations of SL systems
that are fit for neural network training requires additional infrastructure.

Statement of need

Due to the inherent dependence of the performance of ML approaches on their training data,
the deep learning approach to SL detection is in tension with scientific reproducibility without
a clear prescription for the simulation of the training data. There is a critical need for a tool
that simulates full datasets in an efficient and reproducible manner, while enabling the use
of all the features of the lenstronomy simulation API. Additionally, this tool should simplify
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user interaction with lenstronomy and organize the simulations and associated metadata into
convenient data structures for deep learning problems. Multiple packages have been developed
to generate realistic training data by wrapping around lenstronomy: baobab (Park, 2021)
generates training sets for lens modeling and hierarchical inference and the LSST Dark Energy
Science Collaboration’s SLSprinkler (Kalmbach et al., 2020) adds strongly lensed variable
objects into catalogs and images. Nonetheless, the need for a simple, general tool capable of
efficiently simulating any astronomical system in a reproducible manner while giving the user
complete freedom to set the properties of objects remains.

Summary

deeplenstronomy generates SL datasets by organizing and expediting user interaction with
lenstronomy. The user creates a single yaml-style configuration file that describes the aspects
of the dataset: number of images, properties of the telescope and camera, cosmological
parameters, observing conditions, properties of the physical objects, and geometry of the SL
systems. deeplenstronomy parses the configuration file and generates the dataset, producing
both the images and the parameters that led to the production of each image as outputs.
The configuration files can easily be shared, enabling users to easily reproduce each other’s
training datasets.
The premier objective of deeplenstronomy is to help astronomers make their training
datasets as realistic as possible. To that end, deeplenstronomy contains built-in features
for the following functionalities: use any stellar light profile or mass profile in lenstronomy;
simulate a variety of astronomical systems such as single galaxies, foreground stars, galaxy
clusters, supernovae, and kilonovae, as well as any combination of those systems; fully control
the placements of objects in the simulations; use observing conditions of real astronomical
surveys; draw any parameter from any probability distribution; introduce any correlation; and
incorporate real images into the simulation. Furthermore, deeplenstronomy facilitates realis-
tic time-domain studies by providing access to public spectral energy distributions of observed
supernovae and kilonovae and incorporating the transient objects into time series of simulated
images. Finally, deeplenstronomy provides data visualization functions to enable users to
inspect their simulation outputs. These features and the path from configuration file to full
data set are shown in Figure 1.
deeplenstronomy makes use of multiple open-source software packages: lenstronomy is
used for all gravitational lensing calculations and image simulation; numpy (Harris et al., 2020)
Arrays are used internally to store image data and perform vectorized calculations; pandas
(McKinney & others, 2010) DataFrames are utilized for storing simulation metadata and file
reading and writing; scipy (Virtanen et al., 2020) is used for integration and interpolation;
matplotlib (Hunter, 2007) functions are used for image visualization; astropy (Astropy
Collaboration et al., 2013) is used for cosmological calculations and color image production;
h5py (Collette, 2014) is utilized for saving images; and PyYAML (Simonov & Net, 2006) is used
to manage the configuration file. While not used directly, some python-benedict (Caccamo,
2018) functionalities helped to create deeplenstronomy’s data structures and internal search
algorithms.
deeplenstronomy is packaged and disseminated via PyPI. Documentation and example
notebooks are available on the deeplenstronomy website. Any bugs or feature requests can
be opened as issues in the GitHub repository (Morgan, 2020).
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Figure 1: The deeplenstronomy process. Dataset properties, camera and telescope properties,
observing conditions, object properties (e.g., lenstronomy light and mass profiles, point sources,
and temporal behavior), the geometry of the SL systems, and optional supplemental input files
(e.g., probability distributions, covariance matrices, and image backgrounds) are specified in the
main configuration file. deeplenstronomy then intreprets the configuration file, calls lenstronomy
simulation functionalities, and organizes the resulting images and metadata.
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