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Summary

ivadomed is an open-source Python package for designing, end-to-end training, and evaluating
deep learning models applied to medical imaging data. The package includes APIs, command-
line tools, documentation, and tutorials. ivadomed also includes pre-trained models such as
spinal tumor segmentation and vertebral labeling. Original features of ivadomed include a
data loader that can parse image and subject metadata for custom data splitting or extra
information during training and evaluation. Any dataset following the Brain Imaging Data
Structure (BIDS) convention will be compatible with ivadomed. Beyond the traditional deep
learning methods, ivadomed features cutting-edge architectures, such as FiLM (Perez et
al., 2017) and HeMis (Havaei et al., 2016), as well as various uncertainty estimation methods
(aleatoric and epistemic), and losses adapted to imbalanced classes and non-binary predictions.
Example applications of ivadomed include MRI object detection, segmentation, and labeling
of anatomical and pathological structures. ivadomed’s main project page is available at
https://ivadomed.org.

Statement of need

Deep learning applied to medical imaging presents many challenges: datasets are often not
publicly-available, ground truth labels are difficult to produce, and needs are usually tailored
to particular datasets and tasks (Kim et al., 2019). There already exists a few deep learning
frameworks for medical imaging, but each has their pros & cons. ivadomed notably addresses
unmet needs in terms of data management, readily-available uncertainty outputs, missing
modalities (in case of multi-channel training) and model comparison, to only name few of the
original features.
Another challenge of medical imaging is the heterogeneity of the data across hospitals (e.g.,
contrast, resolution), making it difficult to create models that can generalize well. Recent
cutting-edge methods address this problem, such as FiLM (Perez et al., 2017) and HeMis
(Havaei et al., 2016), however they are usually not implemented within a comprehensive
framework. In addition to providing these architectures, ivadomed features losses adapted to
imbalanced classes and non-binary predictions.
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Figure 1: Overview of ivadomed main features.

Loader

Standard data structure: In machine learning, lots of time is spent curating the data
(renaming, filtering per feature) before entering the training pipeline (Willemink et al., 2020).
ivadomed features an advanced data loader compatible with a standardized data structure in
neuroimaging: the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016). Thus, any
dataset following the BIDS convention can readily be used by ivadomed. BIDS convention is
originally designed around MRI data and accepts NIfTI file formats, but the BIDS community is
actively expanding its specifications to other modalities (CT, MEG/EEG, microscopy), which
ivadomed will then be able to accommodate.
Access to metadata: One benefit of the BIDS convention is that each image file is associated
with a JSON file containing metadata. ivadomed’s loader can parse image metadata (e.g.,
acquisition parameters, image contrast, resolution) and subject metadata (e.g., pathology, age,
sex) for custom data splitting or extra information during training and evaluation. It is possible
to modulate specific layers of a convolutional neural network using metadata information to
tailor it towards a particular data domain or to enable experiments with architectures such as
FiLM (Perez et al., 2017). Metadata could also be useful to mitigate class imbalance via data
balancing techniques.

Training

Architectures: ivadomed includes all the necessary components for training segmentation
models from start to finish, including data augmentation transformations and transfer learning.
Available architectures include: 2D U-Net (Ronneberger et al., 2015), 3D U-Net (Isensee et
al., 2017), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), Count-ception (Cohen
et al., 2017), and HeMIS U-Net. These models can easily be enriched via attention blocks
(Oktay et al., 2018) or FiLM layers (which modulate U-Net features using metadata).
Losses and class imbalance: Popular losses are available: Dice coefficient (Milletari et al.,
2016), cross-entropy, and L2 norm, including some adapted to medical imaging challenges,
such as the adaptive wing loss (X. Wang et al., 2019) for soft labels and the focal Dice loss
(Wong et al., 2018) for class imbalance. Useful to alleviate overfitting, mixup (Zhang et al.,
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2017) was modified to handle segmentation tasks. To mitigate class imbalance, ivadomed
supports cascaded architectures. With a single inference, it is possible to narrow down the
region of interest via object detection and then segment a specific structure, as illustrated in
Figure 2.
Getting started: It can be overwhelming to get started and choose across all the available
models, losses, and parameters. ivadomed’s repository includes the script ivadomed_automa
te_training to configure and launch multiple trainings across GPUs. In case of interruption
during training, all parameters are saved after each epoch so that training can be resumed at
any time.

Evaluation

Uncertainty: Aleatoric (G. Wang et al., 2019) and/or epistemic (Nair et al., 2020) uncer-
tainties can be computed voxel-wise and/or object-wise (Roy et al., 2018). Multiple metrics
are available, including entropy and coefficient of variation.
Post-processing: Predictions can be conveniently filtered using popular methods, e.g., fill
holes, remove small objects, threshold using uncertainty. It is also possible to compute metrics
for specific object sizes (e.g., small vs. large lesions). ivadomed has a module to find the
optimal threshold value on the soft output prediction, via a grid-search finding applied to
evaluation metrics or ROC curve.
Visualize performance: Convenient visualization tools are available for model design and
optimization: GIF animations across training epochs, visual quality control of data augmen-
tation, training curve plots, integration of the TensorBoard module, and output images with
true/false positive labels. See this example tutorial.

Usage

Past and ongoing research projects using ivadomed are listed here. The figure below illustrates
a cascaded architecture for segmenting spinal tumors on MRI data (Lemay et al., 2020).

Figure 2: Fully automatic spinal cord tumor segmentation framework..
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