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Introduction

In computational physics, mathematical models are numerically solved and as a result, realiza-
tions for the quantities of interest (QoIs) are obtained. Even when adopting the most accurate
numerical methods for deterministic mathematical models, the QoIs can still be up to some
extent uncertain. Uncertainty is defined as the lack of certainty and it originates from the
lack, impropriety or insufficiency of knowledge and information (Ghanem et al., 2017; Smith,
2013). It is important to note that for a QoI, uncertainty is different from error which is de-
fined as the deviation of a realization from a reference (true) value. In computational models,
various sources of uncertainties may exist. These include, but not limited to, the fidelity of the
mathematical model (i.e., the extent by which the model can reflect the truth), the parame-
ters in the models, initial data and boundary conditions, finite sampling time when computing
the time-averaged QoIs, the way numerical errors interact and evolve, computer arithmetic,
coding bugs, geometrical uncertainties, etc. Various mathematical and statistical techniques
gathered under the umbrella of uncertainty quantification (UQ) can be exploited to assess the
uncertainty in different models and their QoIs (Ghanem et al., 2017; Smith, 2013). The UQ
techniques not only facilitate systematic evaluation of validation and verification metrics, but
also play a vital role in evaluation of the confidence and reliability of the data acquired in
computations and experiments. Note that accurate accounting for such confidence intervals
is crucial in data-driven engineering designs.
In general, uncertainties can be divided into two main categories: aleatoric and epistemic
(Smith, 2013). The aleatoric uncertainties are random, inherent in the models, and hence,
cannot be removed. In contrast, epistemic uncertainties originate from using simplified models,
insufficient data, etc. Therefore, they can be reduced, for instance, through improving the
models. As a general strategy in UQ, we try to reformulate the epistemic uncertainties in
terms of aleatoric uncertainties so that probabilistic approaches can be applied. To implement
the resulting framework, we can adopt a non-intrusive point of view which does not require
the computational codes, hereafter simulators, to be modified. As a result, the UQ techniques
can be combined with different features of computer experiments (Santner et al., 2003).
These strategies constitute the foundations of developing UQit, a Python package for uncer-
tainty quantification in computational physics, in general, and computational fluid dynamics
(CFD), in particular. In CFD, the Navier-Stokes equations are numerically integrated as a
model of fluid flows. The flows are, in general, three-dimensional and time-dependent (un-
steady) and at most of the Reynolds numbers relevant to practical applications, turbulent.
A wide range of approaches has been used for numerical modeling of turbulence (Sagaut et
al., 2013). Moving from low- toward high-fidelity approaches, the nature of the uncertainties
inherent in the simulations change from model-based to numerical-driven. Regardless of the
approach, we may need to study the influence of different factors on the simulations QoIs,
where UQ techniques are beneficial.
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Statement of need & Design

Performing different types of UQ analyses in CFD is so important that it has been considered
as one of the required technologies in the NASA CFD vision 2030 (Slotnick et al., 2014).
In this regard, UQit can be seen as a good match noting that it can be (one of) the first
Python-based open-source packages for UQ in CFD. In fact, there are many similarities as
well as connections between UQ and the techniques in the fields of machine learning and data
sciences in which Python libraries are rich. These besides the flexible design of UQit provide
a good potential for further development of UQit in response to different needs coming up in
particular applications. Due to the non-intrusive nature of the implemented UQ techniques,
UQit treats the CFD simulator as a blackbox, therefore it can be linked to any CFD simulator
conditioned on having an appropriate interface. As a possible future development, a Python
VTK interface can be considered for the purpose of in-situ UQ analyses which will be suitable
for large-scale simulations of fluid flows on supercomputers without the need of storing large
data sets.
The documentation for each UQ technique in UQit starts from providing an overview of the
theoretical background and introducing the main relevant references. These are followed by
the details of implementation, instructions on how to use the method, and notebooks. The
examples in each notebook are exploited not only as a user guide, but also as a way to verify
and validate the implementations in UQit through comparison of the results with reference
data. Considering these aspects, UQit provides an appropriate environment for pedagogical
purposes when it comes to practical guides to UQ approaches.

Features

Here, a short summary of the main UQ techniques implemented in UQit is given. In general,
the methods are implemented at the highest required flexibility and they can be applied to any
number of uncertain parameters. For the theoretical background, further details, and different
applications in CFD, see our recent paper (Rezaeiravesh et al., 2020).
Surrogates play a key role in conducting non-intrusive UQ analyses and computer experi-
ments. They establish a functional relation between the simulator outputs (or QoIs) and the
model inputs and parameters. The surrogates are constructed based on a limited number
of training data and once constructed, they are much less expensive to run than the simula-
tors. UQit uses different approaches to construct surrogates, including Lagrange interpolation,
polynomial chaos expansion (Xiu, 2010; Xiu & Karniadakis, 2002), and Gaussian process re-
gression (Gramacy, 2020; Rasmussen & Williams, 2005). In developing UQit, a high level
of flexibility in constructing GPR surrogates has been considered especially when it comes to
incorporating the observational uncertainties.
The goal of uncertainty propagation or UQ forward problem is to estimate how the known
uncertainties in the inputs and parameters propagate into the QoIs. In UQit, these problems
are efficiently handled using non-intrusive generalized polynomial chaos expansion (PCE) (Xiu,
2010; Xiu & Karniadakis, 2002). For constructing a PCE, UQit offers a diverse set of options
for the schemes of truncating the expansion, types of parameter samples, and methods to
compute the coefficients in the expansion. For the latter, regression and projection methods
can be adopted. As a useful feature for computationally expensive CFD simulations, the
compressed sensing method can be utilized when the number of training samples is less than
the number of terms in the expansion. By combining standard PCE and GPR, UQit provides
the novel probabilistic PCE which is applicable to many CFD applications.
Global sensitivity analysis is performed to quantify the sensitivity of the QoIs with respect
to the uncertain inputs and parameters. Contrary to the local sensitivity analysis, in GSA all
parameters are allowed to vary simultaneously and no linearization is involved in computing
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sensitivities. In UQit, Sobol Sensitivity Indices (main, interaction, and total) (Sobol, 2001)
are computed as indicators of GSA.
Driven by the needs, different features will be developed and added to UQit in future.
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