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Summary

Learning Simulator is a software for simulating learning in animals and humans, as studied for
example in experimental psychology and animal cognition research. It is primarily intended
for computational and behavioral biologists, ethologists, and psychologists, and it can also be
useful to students and teachers in these fields.

Introduction

Learning Simulator was developed to study learning in animals and humans. The current
version implements associative learning (AL) and reinforcement learning (RL) algorithms, apt
to study instrumental (operant) learning and Pavlovian (classical) learning (Bouton, 2016;
Pearce, 2013), including in complex situations such as social learning or maze learning. A
plugin system to add more learning mechanisms is planned for a future version.
The simulator uses a common framing of learning that comprises a subject interacting with an
environment. The environment presents a stimulus to the subject, and the subject responds
with a behavior. As a result, the environment presents the next stimulus that the subject
responds to, and so on. See Figure 1.

Figure 1: The subject and the world can be seen as two interacting dynamical systems, where the
state variables in the subject determine the probabilities for its behaviors (the subject’s output), and
each behavior from the subject puts the environment in a state that determines (probabilistically) its
output stimulus.
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The stimuli that the environment presents and the behaviors that the subject can exhibit
are pre-defined by the user of the program. Each stimulus is given a reinforcement value
(corresponding to genetically determined values in biological organisms). A stimulus such as
food would typically have a positive value, while the perception of harm to the body would
have a negative value.
As seen in Figure 1, the consequence of responding with a behavior (say B) to a stimulus
(say S) is that the subject meets the next stimulus (say S′):

S → B → S′.

Learning algorithms can then use the reinforcement value of S′ as an indication of the quality
of the response B to S. Specifically, this can be accomplished by updating one or more
of the subject’s memory state variables. These state variables control the probabilities of
future responses: if the response B to stimulus S leads to a reward (a stimulus with high
reinforcement value), the subject will be more likely to respond with B the next time it faces
S.
The user of Learning Simulator specifies in a text script how the output stimulus from the
environment depends on the subject’s response to the previous stimulus. This script also
specifies the values of all parameters used in the learning process. The simulation script,
written in a simple and well-documented scripting language, is the only input to Learning
Simulator, facilitating reproducible workflows. The script also specifies how to visualize the
simulation data, for example how a memory state variable changes during the simulation.
Learning Simulator can also export results to CSV files.
More information is available at https://www.learningsimulator.org.

Applications of associative learning

Associative learning theory has a rich tradition of computational modeling, which has recently
converged with RL learning models from machine learning (Sutton & Barto, 2018). During
the last decade or so, AL and RL algorithms have proven increasingly powerful.
Firstly, when applied to deep neural networks, RL has been used to teach computers to find
optimal play and achieve human-level skills in chess (Silver et al., 2017) and the Chinese board
game Go (Silver et al., 2016).
Secondly, behaving optimally (or near-optimally) is central to animals’ adaptation to their
environment. AL and RL can provide explanations for a wide range of learning phenomena in
both humans and animals (Dayan & Niv, 2008; Enquist et al., 2016; Ghirlanda et al., 2020;
Niv, 2009). Indeed, investigating predictions about animal and human behavior is the main
motivation behind Learning Simulator, with the goal to understand biological learning and its
numerous applications to animal welfare and training (McGreevy & Boakes, 2011), and to
human health (Bernstein, 1999; Haselgrove & Hogarth, 2013; Schachtman & Reilly, 2011).

Statement of need

As a result of a strong theoretical tradition, and of the many application areas, there are now
many AL and RL models with varying properties and varying predictive power in different
environments.
This situation has created a need for a general simulation software offering a convenient way
to investigate different learning models. The first aim of our software is to fulfil this need.
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The second aim is to provide a generic, flexible way to describe unambiguously the design of
learning experiments or, more generally, the features of any learning scenario.
The main advantage of Learning Simulator is its simple scripting language that provides a
way to explore and understand learning mechanisms in a multitude of learning scenarios, and
investigate the effects of varying their underlying parameters.
A further strength is the simplicity with which even complex learning environments can be
specified, such as psychological experiments with complex dependencies between stimuli and
behaviors. The scripting language has been developed to be useful to any researcher of learning
phenomena – not necessarily computer programmers.
Our software has been used in scientific publications (Ghirlanda et al., 2020; Lind, 2018;
Lind et al., 2019) as well as in teaching at the Ethology Master’s Programme at Stockholm
University, at the Veterinary Programme at the Swedish University of Agricultural Sciences,
and at the Department of Psychology of Brooklyn College, City University of New York.
An open source license and an accessible scripting language enable further scientific exploration
of learning phenomena by students and experts alike within the fields of biology, ethology,
psychology, and neuroscience.

State of the field

Other simulating software either specialize in one specific mechanism (Schultheis et al., 2008a,
2008b; Alonso et al., 2012) or only include models of classical conditioning (George, 2019;
Harris & Livesey, 2010; Thorwart et al., 2009), or provide only one learning algorithm or
environment (Q-Learning Simulator, n.d.).
Learning Simulator provides a common interface to several AL and RL algorithms:

• Stimulus-response learning (Bush & Mosteller, 1951),
• Rescorla-Wagner (Rescorla & Wagner, 1972),
• Actor-critic (Sutton & Barto, 2018; Witten, 1977),
• Q-learning (Watkins, 1989; Watkins & Dayan, 1992),
• Expected SARSA (Van Seijen et al., 2009), and
• A-learning (Ghirlanda et al., 2020)

facilitating direct comparison of these mechanisms.

Repository

The program is written in Python and its source code repository is hosted on GitHub. Its doc-
umentation is hosted on Read the Docs. The repository incorporates continuous integration
with automatic build of the documentation, linting, and execution of a test suite along with
code coverage measurement.
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