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Summary

Vibrations of ice-shelves in response to ocean waves were first investigated by Holdsworth &
Glynn (1978) who proposed that resonant vibrations lead to icebergs calving from the shelf
front. Since then seismometric measurements on the Ross ice-shelf, the largest Antarctic
ice-shelf, confirmed the presence of this ocean wave-induced ice-shelf vibration (Bromirski et
al., 2015; Massom et al., 2018). The period of vibration ranged from the long infragrav-
ity/tsunami waves to shorter, swell waves. More recently, Brunt et al. (2011) presented
the first observational evidence that a Northern Hemisphere tsunami triggered calving on the
Sulzberger ice-shelf. Mathematical models based on linear wave theory have been proposed
to study these ocean-wave induced ice-shelf vibrations.

Figure 1: Geometry and the Governing equations.

Consider the geometry and the schematic shown in Figure 1. The motion of the ice-shelf (solid)
is governed by the elastodynamic equations which are coupled with the fluid motion, governed
using the linear potential flow theory. The fluid is modelled as a semi-infinite rectangular
region of uniform depth, whereas the sub-shelf cavity region is assumed to be non-uniform.
The time-domain problem is converted to the frequency domain by applying a transformation

Φ(x, z, t) = Re
{
ϕ(x, z)e−iωt

}
, u(x, z, t) = Re

{
η(x, z)e−iωt

}
(1)

at a prescribed frequency ω. The semi-infinite region is truncated by constructing analytic
expressions and deriving a non-local boundary condition of the form

∂xϕ = Qϕ+ χ on Γ
(4)
f . (2)
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The computational domain is then restricted to the sub-shelf cavity region where the finite
element method is used to solve the resulting governing equations. The finite dimensional
weak formulation of the coupled problem is to find (ϕh,wh) ∈ Vh ×Wh such that

(∇ϕh,∇ψ)Ωf
= −iω ⟨wh, ψ⟩Γ(3)

f

+ ⟨Qϕh, ψ⟩Γ(4)
f

+ ⟨χ, ψ⟩
Γ
(4)
f

(3)

(σ(wh) : ϵ(v))Ωs
= ρsω

2 (wh,v)Ωs
+ ⟨wh,v · n⟩

Γ
(1)
s

− iω ⟨ϕh,v⟩Γ(3)
f

(4)

where Vh and Wh are appropriate finite element spaces. For more details on the construction
of the non-local boundary condition, refer to Ilyas et al. (2018).

Solution Method

The solution method is based on the modal expansion technique (Ilyas et al., 2018; B. Kalya-
naraman et al., 2020). The displacement and the velocity potential can be written as

ϕh(x, z) = ϕ0(x, z) +

M∑
j=1

λjϕj(x, z), wh(x, z) =

M∑
j=1

λjηj(x, z) (5)

where λj ’s are the unknown dofs. Substituting equation (5) into the weak formulation of the
linear elasticity equations (3), we obtain

M∑
j=1

λj

[
(σ(ηj) : ϵ(wh))Ωs − ρsω

2(ηj ,wh)Ωs

−⟨ηj ,wh · n⟩
Γ
(1)
s

+ iω ⟨ϕj ,wh⟩Γ(3)
f

]
= −iω ⟨ϕ0,wh⟩Γ(3)

f

which corresponds to the (reduced) linear system

[K− ω2M+ iωB]{λ} = {f} (6)

where the entries of the matrices are given by

Kjk = (σ(ηj) : ϵ(ηk))Ωs
, Mjk = ρs(ηj , ηk)Ωs

,

Cjk = ⟨ηj , ηk · n⟩
Γ
(1)
s
, Bjk = ⟨ϕj , ηk⟩Γ(3)

f

.

The functions ηj ∈ Wh are the in–vacuo vibration modes of the ice–shelf which corresponds
to solving the eigenvalue problem

(σ(η) : ϵ(v))Ωs
= ρs β

2 (η,v)Ωs

for all v ∈ Wh. The diffraction potential ϕ0 ∈ Vh and the radiation potential ϕj ∈ Vh
corresponding to the vibration mode ηj can be obtained by solving:

(∇ϕ0,∇ψ)Ωf
= ⟨Qϕ0, ψ⟩Γ(4)

f

+ ⟨χ, ψ⟩
Γ
(4)
f

(∇ϕj ,∇ψ)Ωf
= ⟨Qϕj , ψ⟩Γ(4)

f

− iω ⟨ηj , ψ⟩Γ(3)
f

The diffraction and radiation potentials can be computed in parallel once the in-vacuo modes
are obtained. The entries in the linear system (Equation 6) are analytic functions of the
incident frequency ω. The dimension of the linear system is much smaller than the finite
element degrees of freedom and can be solved efficiently. Using the analyticity of the resulting
system, a large number of frequency domain solutions can be obtained by interpolating the
linear system without having to solve the much larger finite element problem on a finer
frequency grid.
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Example

We consider the problem of simulating the vibrations of iceberg which is a modification of
the ice-shelf vibration problem. This example is given in the program iceberg.edp. The
following bash script solves a small set of the iceberg problem using the finite element method
for different values of incident wave frequencies:

#!/bin/bash
# Generate the working directory
./genDir.sh 1_ICEBERG/;

# Solve the finite element-frequency domain problems.
for i in $(seq 15 2.5 80)
do

mpirun -np 2 FreeFem++-mpi -v 0 iceberg.edp -N1 20 -N2 30 -Tr $i
-L 3000 -H 2000 -h 200 -nev 8 -iter $(echo $i/2.5-5 | bc) >
/dev/null;

echo "Done $i";
done

Figure 2: Figure showing (Top) the value of the reflection coefficients on a coarse ω-space (blue,+)
and on a fine ω-space (red,solid) obtained after solving the interpolated system. (Middle) The value
of the reflection and transmission coefficients as a function of the incident frequency. The energy
conservation result |T |2 + |R|2 = 1 is also verified. (Bottom) Modal contribution, |λj | of the various
in-vacuo modes as a function of frequency.

This computes the solution on a coarse ω-space, (ωc) containing 27 points. The program then
writes a set of files containing the real and imaginary part of the LHS and RHS of the linear
system (6) inside the working directory along with the diffraction and radiation reflection co-
efficients. Once the reduced system is obtained, the entries inside the files can be interpolated
on a finer ω-space (ωf ) to obtain the solution. Once the solutions for λ on the finer grid is
obtained, quantities like the reflection coefficients can be computed using the new solution
and the diffraction and radiation reflection coefficients (Figure 2). Several MATLAB routines
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are available in the modules folder to compute the solution and the reflection coefficients in
real and complex ω space. For example, to perform interpolation on the real ω-space and
obtain the solution λj , the function interpolateFreq() could be used. An example script
using interpolateFreq() to compute the reflection and transmission coefficients is given in
RealRefIce.m. The PDF manual contains more details on the MATLAB interface along with
tutorials to use the macros available within the package. More examples can be found in the
README.md file located in the repository.

Statement of need

FreeFem (Hecht, 2012) is an open-source domain specific language to implement finite ele-
ment methods and is based on C++. FreeFem is an excellent choice for studying ice-shelf
vibrations problems due to its flexibility and ease of implementation. Similar packages in-
clude deal.II (Arndt et al., 2020), FEniCS project (Logg et al., 2012), which are examples
of automated differential equation solvers and more modern packages like Gridap (Badia &
Verdugo, 2020), based on Julia. iceFEM is a FreeFem package for simulating ice-shelf vibra-
tions, heavily inspired by the ffddm module available in FreeFem for implementing the domain
decomposition methods. Numerical methods have been proposed to study the vibrations of
these ice-shelves, predominantly based on the thickness averaged thin-plate model for the ice-
shelf and the depth averaged shallow-water models for the fluid flow in the sub–shelf cavity
region (Meylan et al., 2017; Sergienko, 2013). More recently, finite element methods have
been proposed to model non-uniform shelf/cavity regions (Ilyas et al., 2018; B. Kalyanaraman
et al., 2020). The method also involves implementing a general non-local boundary condition
based on analytic expressions to handle semi-infinite regions. The numerical methods can
be extended to complex valued inputs for the incident frequency and hence require flexible
and versatile finite element solvers while being easy to implement. iceFEM implements the
method to solve the vibration problem for complex valued incident frequencies which are useful
to study resonances in the complex plane (B. Kalyanaraman et al., 2020), shown in Figure 3.
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Figure 3: Reflection and Transmission Coefficient as a function of complex frequencies. The white
dots indicate the poles which are points where there is an abrupt change in color. The poles correspond
to the resonance frequencies of the shelf/cavity system. The color denotes the phase angle and the
brightness, the magnitude of the complex number (Wegert, 2012).

While a priori knowledge of finite elements are useful to write scripts using iceFEM, some
macros which yield the essential stiffness matrix and load vector are available. More work is
being done to improve the user-friendliness of iceFEM in future releases. Real-life examples
using the BEDMAP2 dataset can also be imported and solved using iceFEM. The finite element
algorithms in the iceFEM package was validated using the thin-plate solutions obtained using
the eigenfunction matching methods in B. Kalyanaraman et al. (2019).
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