
fuelcell: A Python package and graphical user
interface for electrochemical data analysis
Samay Garg1, 2, Julie C. Fornaciari1, 2, Adam Z. Weber1, and Nemanja
Danilovic1

1 Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720 2 Department of Chemical and Biomolecular Engineering, University of
California Berkeley, Berkeley CA 94720

DOI: 10.21105/joss.02940

Software
• Review
• Repository
• Archive

Editor: Jeff Gostick
Reviewers:

• @jlopata21
• @shimpalee

Submitted: 24 November 2020
Published: 16 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Overview

fuelcell is a Python package designed to standardize and streamline the analysis of elec-
trochemical data. This package includes modules for data processing and data visualization,
as well as a graphical user interface (GUI) for interactive use.

Introduction

As the demand for sustainable, carbon-free electricity increases globally, development of elec-
trochemical energy conversion devices is increasing rapidly. These devices include fuel cells,
flow batteries, and water electrolysis cells. A wide range of diagnostic experiments is used
to assess the performance, durability, and efficiency of electrochemical devices. (Bard &
Faulkner, 2001; Newman & Thomas-Alyea, 2004). Among the most commonly used tech-
niques are chronopotentiometry (CP), chronoamperometry (CA), cyclic voltammetry (CV),
linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) exper-
iments.(Bard & Faulkner, 2001; L. Wang, 2003; Newman & Thomas-Alyea, 2004; Orazem
& Tribollet, 2008). Although these experimental protocols have been well-established in the
field of electrochemistry, the protocols for analyzing electrochemical data have not been clearly
standardized. Standardizing electrochemical data analysis will also aid in applying machine
learning frameworks to extract valuable information from electrochemical data sets.

Statement of need

A single electrochemical experiment can generate on the order of ten thousand data points,
and several individual experiments are frequently used to assess a single cell. Electrochemical
experiments also generate large quantities of raw data, which require extensive preprocessing
before the data can be used to assess the performance of an electrochemical device completely.
Processing and analyzing the data from a single experiment using conventional methods often
is a bottleneck and time consuming. Manually processing this data also introduces unnec-
essary human error into the results, resulting in increased variation both between individual
researchers and between research groups within the electrochemical field (Agbo & Danilovic,
2019). Therefore, an application that efficiently processes electrochemical data will standard-
ize and expedite the analysis of data generated from electrochemical experiments.

Garg et al., (2021). fuelcell: A Python package and graphical user interface for electrochemical data analysis. Journal of Open Source
Software, 6(59), 2940. https://doi.org/10.21105/joss.02940

1

https://doi.org/10.21105/joss.02940
https://github.com/openjournals/joss-reviews/issues/2940
https://github.com/samaygarg/fuelcell
https://doi.org/10.5281/zenodo.4606814
http://pmeal.com
https://github.com/jlopata21
https://github.com/shimpalee
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02940


Functionality

fuelcell includes modules for both data processing and visualization to enable a smooth,
efficient workflow from raw data to publication-ready figures. These modules can be imported
and used programmatically as a standard Python package, and fuelcell also includes a
standalone GUI that allows users with little or no programming experience to utilize these
modules. fuelcell also serves as a platform that can be expanded to facilitate new and
more advanced techniques as the needs of the electrochemical community evolve.

fuelcell.datums

Every experiment requires a unique protocol to process the raw experimental data, so the
datums module contains experiment-specific functions to read and process data for each
experiment. Currently, functions to process CV, CP, CA, LSV, and EIS data are included
fuelcell, and new protocols can be added to the project by opening an issue on GitHub. The
complexity of these processing protocols varies depending on the experiment, and the specific
data processing steps carried out for each experiment are detailed in the documentation. The
datums module also includes functions to determine the Tafel slope and exchange current
density from LSV data as well as to extract the high-frequency resistance (HFR) value from
EIS data (Agbo & Danilovic, 2019; Orazem & Tribollet, 2008).

fuelcell.visuals

The visuals module includes functions to generate visualizations, which are commonly used in
the electrochemical community. fuelcell currently includes functions to generate polariza-
tion curves, cyclic voltammograms, linear sweep voltammograms, and Nyquist plots (Figure
1). This module is built around the matplotlib library, which allows for highly customizable
visualizations. The visuals module is designed to integrate both seamlessly with the datums
module and to function as an independent module that can be incorporated into an existing
workflow.

Garg et al., (2021). fuelcell: A Python package and graphical user interface for electrochemical data analysis. Journal of Open Source
Software, 6(59), 2940. https://doi.org/10.21105/joss.02940

2

https://doi.org/10.21105/joss.02940


Figure 1: Examples of figures created using functions in fuelcell.visuals. (a) Polarization curves
generated using data from CP experiments. (b) Cyclic voltammograms. (c) LSV data with the Tafel
fit overlaid in yellow. (d) EIS data with the HFR value calculated using both a semicircle fit and a
linear fit.

fuelcell_gui

The GUI is included in the standard fuelcell installation, but it can also be installed in-
dependently as a single executable file (Windows and MacOS) that includes all necessary
dependencies. The GUI also enables users to interactively create and customize visualizations
without being familiar with the ins and outs of the matplotlib library. This GUI has been
shown to greatly reduce the time required to process electrochemical data, with researchers
using the program reporting that it reduces the time required to process data from testing
four cells from close to one hour to about five minutes.

Garg et al., (2021). fuelcell: A Python package and graphical user interface for electrochemical data analysis. Journal of Open Source
Software, 6(59), 2940. https://doi.org/10.21105/joss.02940

3

https://doi.org/10.21105/joss.02940


Figure 2: Data visualization tab of the GUI.

Acknowledgements

SG acknowledges funding from the Berkeley Lab Undergraduate Research Fellowship. The
authors thank Dr. Xiong Peng, Zachary Taie, Eden Tzanetopoulos, and Grace Anderson for
helpful discussions and assisting with testing the program.

References

Agbo, P., & Danilovic, N. (2019). An Algorithm for the Extraction of Tafel Slopes. The
Journal of Physical Chemistry C, 123. https://doi.org/10.1021/acs.jpcc.9b06820

Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applica-
tions. John Wiley; Sons.

L. Wang, T. Z., A. Husar. (2003). A Parametric Study of PEM Fuel Cell Performances.
International Journal of Hydrogen Energy, 28. https://doi.org/10.1016/S0360-3199(02)
00284-7

Newman, J., & Thomas-Alyea, K. E. (2004). Electrochemical systems, third edition. John
Wiley; Sons.

Orazem, J., & Tribollet, B. (2008). Electrochemical impedance spectroscopy. John Wiley;
Sons.

Garg et al., (2021). fuelcell: A Python package and graphical user interface for electrochemical data analysis. Journal of Open Source
Software, 6(59), 2940. https://doi.org/10.21105/joss.02940

4

https://doi.org/10.1021/acs.jpcc.9b06820
https://doi.org/10.1016/S0360-3199(02)00284-7
https://doi.org/10.1016/S0360-3199(02)00284-7
https://doi.org/10.21105/joss.02940

	Overview
	Introduction
	Statement of need
	Functionality
	fuelcell.datums
	fuelcell.visuals
	fuelcell_gui

	Acknowledgements
	References

