
libCEED: Fast algebra for high-order element-based
discretizations
Jed Brown1, Ahmad Abdelfattah3, Valeria Barra1, Natalie Beams3,
Jean-Sylvain Camier2, Veselin Dobrev2, Yohann Dudouit2, Leila
Ghaffari1, Tzanio Kolev2, David Medina4, Will Pazner2, Thilina
Ratnayaka5, Jeremy Thompson1, and Stan Tomov3

1 University of Colorado at Boulder 2 Lawrence Livermore National Laboratory 3 University of
Tennessee 4 Occalytics LLC 5 University of Illinois at Urbana-Champaign

DOI: 10.21105/joss.02945

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @thelfer
• @FreddieWitherden,

Submitted: 04 January 2021
Published: 09 July 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary and statement of need

Finite element methods are widely used to solve partial differential equations (PDE) in science
and engineering, but their standard implementation (Arndt et al., 2020; Kirk et al., 2006;
Logg et al., 2012) relies on assembling sparse matrices. Sparse matrix multiplication and
triangular operations perform a scalar multiply and add for each nonzero entry, just 2 floating
point operations (flops) per scalar that must be loaded from memory (Williams et al., 2009).
Modern hardware is capable of nearly 100 flops per scalar streamed from memory (Rupp, 2020)
so sparse matrix operations cannot achieve more than about 2% utilization of arithmetic units.
Matrix assembly becomes even more problematic when the polynomial degree p of the basis
functions is increased, resulting in O(pd) storage and O(p2d) compute per degree of freedom
(DoF) in d dimensions. Methods pioneered by the spectral element community (Deville et
al., 2002; Orszag, 1980) exploit problem structure to reduce costs to O(1) storage and O(p)
compute per DoF, with very high utilization of modern CPUs and GPUs. Unfortunately, high-
quality implementations have been relegated to applications and intrusive frameworks that are
often difficult to extend to new problems or incorporate into legacy applications, especially
when strong preconditioners are required.
libCEED, the Code for Efficient Extensible Discretization (Abdelfattah et al., 2021), is a
lightweight library that provides a purely algebraic interface for linear and nonlinear operators
and preconditioners with element-based discretizations. libCEED provides portable perfor-
mance via run-time selection of implementations optimized for CPUs and GPUs, including
support for just-in-time (JIT) compilation. It is designed for convenient use in new and legacy
software, and offers interfaces in C99 (International Standards Organisation, 1999), Fortran77
(ANSI, 1978), Python (Python, 2021), Julia (Bezanson et al., 2017), and Rust (Rust, 2021).
Users and library developers can integrate libCEED at a low level into existing applications in
place of existing matrix-vector products without significant refactoring of their own discretiza-
tion infrastructure. Alternatively, users can utilize integrated libCEED support in MFEM
(Anderson et al., 2020; MFEM, 2021).
In addition to supporting applications and discretization libraries, libCEED provides a plat-
form for performance engineering and co-design, as well as an algebraic interface for solvers
research like adaptive p-multigrid, much like how sparse matrix libraries enable development
and deployment of algebraic multigrid solvers.

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

1

https://doi.org/10.21105/joss.02945
https://github.com/openjournals/joss-reviews/issues/2945
https://github.com/CEED/libCEED
https://doi.org/10.5281/zenodo.5080235
http://www.diehlpk.de
https://github.com/thelfer
https://github.com/FreddieWitherden,
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02945


Concepts and interface

Consider finite element discretization of a problem based on a weak form with one weak
derivative: find u such that

vTF (u) :=

∫
Ω

v · f0(u,∇u) +∇v :f1(u,∇u) = 0 ∀v,

where the functions f0 and f1 define the physics and possible stabilization of the problem
(Brown, 2010) and the functions u and v live in a suitable space. Integrals in the weak form
are evaluated by summing over elements e,

F (u) =
∑
e

ET
e BT

e Wef(BeEeu),

where Ee restricts to element e, Be evaluates solution values and derivatives to quadrature
points, f acts independently at quadrature points, and We is a (diagonal) weighting at quadra-
ture points. By grouping the operations We and f into a point-block diagonal D and stacking
the restrictions Ee and basis actions Be for each element, we can express the global residual
in operator notation (Figure 1), where P is an optional external operator, such as the parallel
restriction in MPI-based (Gropp et al., 2014) solvers. Inhomogeneous Neumann, Robin, and
nonlinear boundary conditions can be added in a similar fashion by adding terms integrated
over boundary faces while Dirichlet boundary conditions can be added by setting the target
values prior to applying the operator representing the weak form. Similar face integral terms
can also be used to represent discontinuous Galerkin formulations.

Figure 1: libCEED uses a logical decomposition to define element-based discretizations, with opti-
mized implementations of the action and preconditioning ingredients.

libCEED’s native C interface is object-oriented, providing data types for each logical object
in the decomposition.

Symbol libCEED type Description
D CeedQFunction User-defined action at quadrature points
B CeedBasis Basis evaluation to quadrature (dense/structured)
E CeedElemRestriction Restriction to each element (sparse/boolean)
A CeedOperator Linear or nonlinear operator acting on L-vectors

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

2

https://doi.org/10.21105/joss.02945


libCEED implementations (“backends”) are free to reorder and fuse computational steps
(including eliding memory to store intermediate representations) so long as the mathematical
properties of the operator A are preserved. A CeedOperator is composed of one or more
operators defined as in Figure 1, and acts on a CeedVector, which typically encapsulates zero-
copy access to host or device memory provided by the caller. The element restriction E requires
mesh topology and a numbering of DoFs, and may be a no-op when data is already composed
by element (such as with discontinuous Galerkin methods). The discrete basis B is the
purely algebraic expression of a finite element basis (shape functions) and quadrature; it often
possesses structure that is exploited to speed up its action. Some constructors are provided
for arbitrary polynomial degree H1 Lagrange bases with a tensor-product representation due
to the computational efficiency of computing solution values and derivatives at quadrature
points via tensor contractions. However, the user can define a CeedBasis for arbitrary
element topology including tetrahedra, prisms, and other realizations of abstract polytopes, by
providing quadrature weights and the matrices used to compute solution values and derivatives
at quadrature points from the DoFs on the element.
The physics (weak form) is expressed through CeedQFunction, which can either be defined
by the user or selected from a gallery distributed with libCEED. These pointwise functions
do not depend on element resolution, topology, or basis degree (see Figure 2), in contrast to
systems like FEniCS where UFL forms specify basis degree at compile time. This isolation is
valuable for hp-refinement and adaptivity (where h commonly denotes the average element
size and p the polynomial degree of the basis functions; see Babuška & Suri (1994)) and p-
multigrid solvers; mixed-degree, mixed-topology, and h-nonconforming finite element methods
are readily expressed by composition. Additionally, a single source implementation (in vanilla
C or C++) for the CeedQFunctions can be used on CPUs or GPUs (transparently using the
NVRTC (2021), HIPRTC, or OCCA (OCCA Development Site, 2021) run-time compilation
features).
libCEED provides computation of the true operator diagonal for preconditioning with Jacobi
and Chebyshev as well as direct assembly of sparse matrices (e.g., for coarse operators in
multigrid) and construction of p-multigrid prolongation and restriction operators. Precondi-
tioning matrix-free operators is an active area of research; support for domain decomposition
methods and inexact subdomain solvers based on the fast diagonalization method (Lottes &
Fischer, 2005) are in active development.

G2

G1

B2

B1

D︷ ︸︸ ︷
∇ · (∇u)︸ ︷︷ ︸

D

Figure 2: A schematic of element restriction and basis applicator operators for elements with different
topology. This sketch shows the independence of Q-functions (in this case representing a Laplacian)
on element resolution, topology, and basis degree.

High-level languages

libCEED provides high-level interfaces in Python, Julia, and Rust, each of which is maintained
and tested as part of the main repository, but distributed through each language’s respective
package manager.

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

3

https://doi.org/10.21105/joss.02945


The Python interface uses CFFI, the C Foreign Function Interface (C Foreign Function Inter-
face for Python, 2021). CFFI allows reuse of most C declarations and requires only a minimal
adaptation of some of them. The C and Python APIs are mapped in a nearly 1:1 correspon-
dence. For instance, a CeedVector object is exposed as libceed.Vector in Python, and
supports no-copy host and GPU device interperability with Python arrays from the NumPy
(Harris et al., 2020) or Numba (Lam et al., 2015) packages. The interested reader can find
more details on libCEED’s Python interface in Barra et al. (2020).
The Julia interface, referred to as LibCEED.jl, provides both a low-level interface, which
is generated automatically from libCEED’s C header files, and a high-level interface. The
high-level interface takes advantage of Julia’s metaprogramming and just-in-time compilation
capabilities to enable concise definition of Q-functions that work on both CPUs and GPUs,
along with their composition into operators as in Figure 1.
The Rust interface also wraps automatically-generated bindings from the libCEED C header
files, offering increased safety due to Rust ownership and borrow checking, and more conve-
nient definition of Q-functions (e.g., via closures).

Backends

Figure 3 shows a subset of the backend implementations (backends) available in libCEED.
GPU implementations are available via pure CUDA (2021) and pure HIP (2021), as well
as the OCCA (OCCA Development Site, 2021) and MAGMA (MAGMA development site,
2021) libraries. CPU implementations are available via pure C and AVX intrinsics as well
as the LIBXSMM library (LIBXSMM development site, 2021). libCEED provides a dynamic
interface such that users only need to write a single source (no need for templates/generics)
and can select the desired specialized implementation at run time. Moreover, each process or
thread can instantiate an arbitrary number of backends on an arbitrary number of devices.

Figure 3: libCEED provides the algebraic core for element-based discretizations, with specialized
implementations (backends) for heterogeneous architectures.

Performance benchmarks

The Exascale Computing Project (ECP) co-design Center for Efficient Exascale Discretization
(CEED, 2021) has defined a suite of Benchmark Problems (BPs) to test and compare the

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

4

https://doi.org/10.21105/joss.02945


performance of high-order finite element implementations (Fischer et al., 2020; Kolev et al.,
2021). Figure 4 compares the performance of libCEED solving BP3 (CG iteration on a 3D
Poisson problem) or CPU and GPU systems of similar (purchase/operating and energy) cost.
These tests use PETSc (Balay et al., 2021) for unstructured mesh management and parallel
solvers with GPU-aware communication (Zhang et al., 2021); a similar implementation with
comparable performance is available through MFEM.

10−4 10−3 10−2

500

1,000

1,500

2,000

2,500

3,000

Time per CG iteration (s)

M
D

oF
/s

pe
rC

G
ite

ra
tio

n
2x AMD EPYC 7452

10−4 10−3 10−2

Time per CG iteration (s)

NVIDIA V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

Figure 4: Performance for BP3 using the xsmm/blocked backend on a 2-socket AMD EPYC 7452
(32-core, 2.35GHz) and the cuda/gen backend on LLNL’s Lassen system with NVIDIA V100 GPUs.
Each curve represents fixing the basis degree p and varying the number of elements. The CPU
enables faster solution of smaller problem sizes (as in strong scaling) while the GPU is more efficient
for applications that can afford to wait for larger sizes. Note that the CPU exhibits a performance
drop when the working set becomes too large for L3 cache (128 MB/socket) while no such drop
exists for the GPU. (This experiment was run with release candidates of PETSc 3.14 and libCEED
0.7 using gcc-10 on EPYC and clang-10/CUDA-10 on Lassen.)

Demo applications and integration

To highlight the ease of library reuse for solver composition and leverage libCEED’s full
capability for real-world applications, libCEED comes with a suite of application examples,
including problems of interest to the fluid dynamics and solid mechanics communities. The
fluid dynamics example solves the 2D and 3D compressible Navier-Stokes equations using
SU/SUPG stabilization and implicit, explicit, or IMEX time integration; Figure 5 shows vortices
arising in the “density current” (Straka et al., 1993) when a cold bubble of air reaches the
ground. The solid mechanics example solves static linear elasticity and hyperelasticity with
load continuation and Newton-Krylov solvers with p-multigrid preconditioners; Figure 6 shows
a twisted Neo-Hookean beam. Both of these examples have been developed using PETSc,
where libCEED provides the matrix-free operator and preconditioner ingredient evaluation and
PETSc provides the unstructured mesh management and parallel solvers.

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

5

https://doi.org/10.21105/joss.02945


Figure 5: Vortices develop as a cold air bubble drops to the ground.

Figure 6: Strain energy density in a twisted Neo-Hookean beam.

libCEED also includes additional examples with PETSc, MFEM, and Nek5000 (Nek5000,
2021).
If MFEM is built with libCEED support, existing MFEM users can pass -d ceed-cuda:
/gpu/cuda/gen to use a libCEED CUDA backend, and similarly for other backends. The
libCEED implementations, accessed in this way, currently provide MFEM users with the fastest
operator action on CPUs and GPUs (CUDA and HIP/ROCm) without writing any libCEED
Q-functions.

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

6

https://doi.org/10.21105/joss.02945


Acknowledgements

This research is supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and the National
Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering
and early testbed platforms, in support of the nations exascale computing imperative. We
thank Lawrence Livermore National Laboratory for access to the Lassen and Corona machines.

References

Abdelfattah, A., Barra, V., Beams, N., Brown, J., Camier, J.-S., Dobrev, V., Dudouit, Y.,
Ghaffari, L., Kolev, T., Medina, D., Pazner, W., Rathnayake, T., Thompson, J. L., &
Tomov, S. (2021). libCEED user manual (Version 0.8). Zenodo. https://doi.org/10.
5281/zenodo.4895340

Anderson, R., Andrej, J., Barker, A., Bramwell, J., Camier, J.-S., Dobrev, J. C. V., Dudouit,
Y., Fisher, A., Kolev, Tz., Pazner, W., Stowell, M., Tomov, V., Akkerman, I., Dahm, J.,
Medina, D., & Zampini, S. (2020). MFEM: A modular finite element library. Computers
& Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.06.009

ANSI. (1978). Standard X3. 9-1978, programming language Fortran (revision of ANSI X2.
9-1966). In New York: ANSI.

Arndt, D., Bangerth, W., Blais, B., Clevenger, T. C., Fehling, M., Grayver, A. V., Heister, T.,
Heltai, L., Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Rastak, R., Thomas, I.,
Turcksin, B., Wang, Z., & Wells, D. (2020). The deal.II library, version 9.2. Journal of
Numerical Mathematics, 28(3), 131–146. https://doi.org/10.1515/jnma-2020-0043

Babuška, I., & Suri, M. (1994). The p and h − p versions of the finite element method,
basic principles and properties. SIAM Review, 36(4), 578–632. https://doi.org/10.1137/
1036141

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L.,
Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May,
D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., … Zhang, H. (2021).
PETSc users manual (ANL-95/11 - Revision 3.15). Argonne National Laboratory.

Barra, V., Brown, J., Thompson, J., & Dudouit, Y. (2020). High-performance operator
evaluations with ease of use: LibCEED’s Python interface. In Meghann Agarwal, Chris
Calloway, Dillon Niederhut, & David Shupe (Eds.), Proceedings of the 19th Python in
Science Conference (pp. 85–90). https://doi.org/10.25080/Majora-342d178e-00c

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Brown, J. (2010). Efficient nonlinear solvers for nodal high-order finite elements in 3D. Journal
of Scientific Computing, 45. https://doi.org/10.1007/s10915-010-9396-8

C foreign function interface for Python. (2021). https://cffi.readthedocs.io
CEED. (2021). https://ceed.exascaleproject.org/
CUDA. (2021). https://developer.nvidia.com/about-cuda
Deville, M. O., Fischer, P. F., & Mund, E. H. (2002). High-order methods for incompressible

fluid flow. Cambridge University Press. ISBN: 0-521-45309-7

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

7

https://doi.org/10.5281/zenodo.4895340
https://doi.org/10.5281/zenodo.4895340
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1515/jnma-2020-0043
https://doi.org/10.1137/1036141
https://doi.org/10.1137/1036141
https://doi.org/10.25080/Majora-342d178e-00c
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s10915-010-9396-8
https://cffi.readthedocs.io
https://ceed.exascaleproject.org/
https://developer.nvidia.com/about-cuda
https://worldcat.org/isbn/0-521-45309-7
https://doi.org/10.21105/joss.02945


Fischer, P., Min, M., Rathnayake, T., Dutta, S., Kolev, T., Dobrev, V., Camier, J.-S., Kro-
nbichler, M., Warburton, T., Świrydowicz, K., & Brown, J. (2020). Scalability of high-
performance PDE solvers. The International Journal of High Performance Computing
Applications. https://doi.org/10.1177/1094342020915762

Gropp, W., Lusk, E., & Skjellum, A. (2014). Using MPI: Portable parallel programming with
the message-passing interface. ISBN: 9780262527392

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

HIP. (2021). https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
International Standards Organisation. (1999). ISO/IEC 9899: 1999 programming languages-

c. American National Standards Institute, New York.
Kirk, B. S., Peterson, J. W., Stogner, R. H., & Carey, G. F. (2006). libMesh: A C++

Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with
Computers, 22(3–4), 237–254. https://doi.org/10.1007/s00366-006-0049-3

Kolev, T., Fischer, P., Min, M., Dongarra, J., Brown, J., Dobrev, V., Warburton, T., Tomov,
S., Shephard, M. S., Abdelfattah, A., Barra, V., Beams, N., Camier, J.-S., Chalmers,
N., Dudouit, Y., Karakus, A., Karlin, I., Kerkemeier, S., Lan, Y.-H., … Tomov, V.
(2021). Efficient exascale discretizations: High-order finite element methods. Interna-
tional Journal of High Performance Computing Applications. https://doi.org/10.1177/
10943420211020803

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. https:
//doi.org/10.1145/2833157.2833162

LIBXSMM development site. (2021). http://github.com/hfp/libxsmm
Logg, A., Mardal, K.-A., Wells, G. N., & others. (2012). Automated solution of differential

equations by the finite element method: The FEniCS book (A. Logg, K.-A. Mardal, & G.
N. Wells, Eds.; Vol. 84). Springer. https://doi.org/10.1007/978-3-642-23099-8

Lottes, J. W., & Fischer, P. F. (2005). Hybrid multigrid/Schwarz algorithms for the spectral
element method. Journal of Scientific Computing, 24(1), 45–78. https://doi.org/10.
1007/s10915-004-4787-3

MAGMA development site. (2021). https://bitbucket.org/icl/magma
MFEM: Modular Finite Element Methods Library. (2021). https://doi.org/10.11578/dc.

20171025.1248
Nek5000. (2021). https://nek5000.mcs.anl.gov/
NVRTC. (2021). https://docs.nvidia.com/cuda/nvrtc/index.html
OCCA development site. (2021). http://github.com/libocca/occa
Orszag, S. A. (1980). Spectral methods for problems in complex geometries. Journal of

Computational Physics, 37, 70–92. https://doi.org/10.1016/0021-9991(80)90005-4
Python. (2021). https://www.python.org/
Rupp, K. (2020). CPU-GPU-MIC comparision charts. https://github.com/karlrupp/

cpu-gpu-mic-comparison
Rust. (2021). https://www.rust-lang.org/

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

8

https://doi.org/10.1177/1094342020915762
https://worldcat.org/isbn/9780262527392
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://doi.org/10.1007/s00366-006-0049-3
https://doi.org/10.1177/10943420211020803
https://doi.org/10.1177/10943420211020803
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://github.com/hfp/libxsmm
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/s10915-004-4787-3
https://doi.org/10.1007/s10915-004-4787-3
https://bitbucket.org/icl/magma
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248
https://nek5000.mcs.anl.gov/
https://docs.nvidia.com/cuda/nvrtc/index.html
http://github.com/libocca/occa
https://doi.org/10.1016/0021-9991(80)90005-4
https://www.python.org/
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://github.com/karlrupp/cpu-gpu-mic-comparison
https://www.rust-lang.org/
https://doi.org/10.21105/joss.02945


Straka, J. M., Wilhelmson, R. B., Wicker, L. J., Anderson, J. R., & Droegemeier, K. K.
(1993). Numerical solutions of a non-linear density current: A benchmark solution and
comparisons. International Journal for Numerical Methods in Fluids, 17(1), 1–22. https:
//doi.org/10.1002/fld.1650170103

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: An insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4), 65–76.
https://doi.org/10.1145/1498765.1498785

Zhang, J., Brown, J., Balay, S., Faibussowitsch, J., Knepley, M., Marin, O., Mills, R. T.,
Munson, T., Smith, B. F., & Zampini, S. (2021). The PetscSF scalable communication
layer. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/10.1109/
TPDS.2021.3084070

Brown et al., (2021). libCEED: Fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63), 2945.
https://doi.org/10.21105/joss.02945

9

https://doi.org/10.1002/fld.1650170103
https://doi.org/10.1002/fld.1650170103
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/TPDS.2021.3084070
https://doi.org/10.1109/TPDS.2021.3084070
https://doi.org/10.21105/joss.02945

	Summary and statement of need
	Concepts and interface
	High-level languages
	Backends
	Performance benchmarks
	Demo applications and integration
	Acknowledgements
	References

