
sboxgates: A program for finding low gate count
implementations of S-boxes
Marcus Dansarie1, 2

1 Swedish Defence University 2 University of Skövde, Sweden
DOI: 10.21105/joss.02946

Software
• Review
• Repository
• Archive

Editor: Viviane Pons
Reviewers:

• @gradvohl
• @HeshamAlsaadi

Submitted: 28 December 2020
Published: 16 June 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

S-boxes are often the only nonlinear components in modern block ciphers. They are commonly
selected to comply with very specific criteria in order to make a cipher secure against, for
example, linear and differential attacks. An M × N S-box can be thought of as a lookup
table that relates an M -bit input value to an N -bit output value, or as a set of N boolean
functions of M variables (Schneier, 1996).
Although cipher specifications generally describe S-boxes using their lookup tables, they can
also be described as boolean functions or logic gate circuits. sboxgates, which is presented
here, finds equivalent logic gate circuits for S-boxes, given their lookup table specification.
Generated circuits are output in a human-readable XML format. The software can convert
the output files into C or CUDA (a parallel computing platform for Nvidia GPUs) source
code. The generated circuits can also be converted to the DOT graph description language
for visualization with Graphviz (Ellson et al., 2002).

Statement of need

Knowledge of a low gate count logic gate representation of an S-box can be of interest both
when assessing the security of a cipher through cryptanalysis and when implementing it in
hardware or software. When the design specification for an S-box is known, analytic approaches
can sometimes be used to construct such a representation. The most notable case of this
is the AES cipher where a very efficient representation of the S-box has been constructed in
this manner (Canright, 2005). However, this is not possible in many cases, such as when the
design specification is unknown or if the S-box is a randomly generated permutation.
While finding a large, inefficient, logic circuit representation is trivial, finding the representation
with the fewest possible gates is an NP-complete problem (Knuth, 2015). The best known
way to find a low gate count logic circuit representation for an S-box given its lookup table
is to use Kwan’s algorithm, which performs a heuristic search. Although not optimal, it has
been shown to produce significantly better results than previous approaches (Kwan, 2000).
sboxgates implements Kwan’s algorithm and supports generation of logic circuits for S-
boxes with up to 8 input bits using any subset of the 16 possible two-input boolean functions.
Additionally, the program can generate circuits that include three-bit lookup tables (LUTs).
The LUT search function is parallelized using MPI (Walker & Dongarra, 1996).
The generated logic circuit representation of an S-box can be directly used in applications
such as: creating bitslice implementations in software for CPUs and GPUs, creating small
chip area or low gate count S-boxes for application specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs), and compact satisfiability (SAT) problem generation.

Dansarie, M., (2021). sboxgates: A program for finding low gate count implementations of S-boxes. Journal of Open Source Software, 6(62),
2946. https://doi.org/10.21105/joss.02946

1

https://doi.org/10.21105/joss.02946
https://github.com/openjournals/joss-reviews/issues/2946
https://github.com/dansarie/sboxgates
https://doi.org/10.5281/zenodo.4954685
https://www.lri.fr/~pons/en/
https://github.com/gradvohl
https://github.com/HeshamAlsaadi
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02946


A bitslice software implementation was first described by Biham (1997). It implements a
cipher in a way that mimics a parallel hardware implementation. The number of parallel
operations is equivalent to the platform register size, which can be up to 512 bits on modern
machines. Some operations, such as bit permutations, have effectively no cost in bitslice
implementations. For these reasons, bitslice implementations are generally many times faster
than conventional implementations. The primary contributor to their time complexity is the
size and efficiency of the S-box logic circuit (Biham, 1997). Modern Nvidia GPUs have an
instruction (LOP3.LUT) that evaluates three-bit lookup tables. This makes them a very
attractive target for bitslice cipher implementations that use LUTs.
In addition to bitslice implementations in software, which attempt to mimic hardware imple-
mentations, designs of actual hardware such as application specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs) can also be made more efficient by small equivalent
logic gate circuits for S-boxes.
In algebraic cryptanalysis, one attack method is to model a cipher along with its inputs and
outputs as a SAT problem. This can be used to find, for example, weak keys in block ciphers
or preimages in hash functions (Lafitte et al., 2014). SAT problems are typically expressed in
conjunctive normal form (CNF) and logic circuits can quickly be converted into CNF using
the Tseytin transform (Knuth, 2015). Thus, an efficient logic gate representation of an S-box
can be transformed into an efficient CNF representation. CNF representations can in turn be
transformed into a system of equations in GF(2) (Lafitte et al., 2014).
The only known software with similar functionality to sboxgates is SBOXDiscovery which is
restricted to generating logic circuit representations of the DES S-boxes (“SBOXDiscovery,”
2015). The software has been abandoned by its original author. Many of the optimizations
of Kwan’s algorithm made in SBOXDiscovery have been included in sboxgates.

References

Biham, E. (1997). A fast new DES implementation in software. In E. Biham (Ed.), Fast
Software Encryption. FSE 1997. Lecture Notes in Computer Science (Vol. 1267, pp.
260–272). Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052352

Canright, D. (2005). A Very Compact S-Box for AES. In J. R. Rao & B. Sunar (Eds.),
Cryptographic Hardware and Embedded Systems. CHES 2005. Lecture Notes in Computer
Science (Vol. 3659, pp. 441–455). Springer, Berlin, Heidelberg. https://doi.org/10.1007/
11545262_32

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., & Woodhull, G. (2002). Graphviz —
Open Source Graph Drawing Tools. In P. Mutzel, M. Jünger, & S. Leipert (Eds.), Graph
Drawing. GD 2001. Lecture Notes in Computer Science (Vol. 2265, pp. 483–484).
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45848-4_57

Knuth, D. E. (2015). The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.
Pearson Education Inc., Boston, MA.

Kwan, M. (2000). Reducing the Gate Count of Bitslice DES. Cryptology ePrint Archive,
Report 2000/051. https://eprint.iacr.org/2000/051

Lafitte, F., Nakahara, J., & Van Heule, D. (2014). Applications of SAT Solvers in Cryptanal-
ysis: Finding Weak Keys and Preimages. Journal on Satisfiability, Boolean Modeling and
Computation, 9(1), 1–25. https://doi.org/10.3233/SAT190099

SBOXDiscovery. (2015). In GitHub repository. https://github.com/tripcode/SBOXDiscovery;
GitHub.

Schneier, B. (1996). Applied Cryptography : Protocols, Algorithms, and Source Code in C
(2. ed.). John Wiley & Sons, Inc.

Dansarie, M., (2021). sboxgates: A program for finding low gate count implementations of S-boxes. Journal of Open Source Software, 6(62),
2946. https://doi.org/10.21105/joss.02946

2

https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/3-540-45848-4_57
https://eprint.iacr.org/2000/051
https://doi.org/10.3233/SAT190099
https://github.com/tripcode/SBOXDiscovery
https://doi.org/10.21105/joss.02946


Walker, D. W., & Dongarra, J. J. (1996). MPI: A Standard Message Passing Interface.
Supercomputer, 12(1), 56–68.

Dansarie, M., (2021). sboxgates: A program for finding low gate count implementations of S-boxes. Journal of Open Source Software, 6(62),
2946. https://doi.org/10.21105/joss.02946

3

https://doi.org/10.21105/joss.02946

	Summary
	Statement of need
	References

