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Summary

Although highly flexible, non-parametric regression models typically require large sample sizes
to be estimated reliably, particularly when they include many explanatory variables. Additive
models provide an alternative that is more flexible than linear models, not affected by the curse
of dimensionality, and also allows the exploration of individual covariate effects. Standard
algorithms to fit these models can be highly susceptible to the presence of a few atypical or
outlying observations in the data. The RBF (Salibian-Barrera & Martı́nez, 2020) package for
R implements the robust estimator for additive models of Boente et al. (2017), which can
resist the damaging effect of outliers in the training set.

Statement of Need

The purpose of RBF is to provide a user-friendly implementation of the robust kernel-based
estimation procedure for additive models proposed in Boente et al. (2017), which is resistant
to the presence of potentially atypical or outlying observations in the training set.

Implementation Goals

RBF implements a user interface similar to that of the R package gam (Hastie, 2019), which
computes the standard non-robust kernel-based fit for additive models using the backfitting
algorithm. The RBF package also includes several modeling tools, including functions to
produce diagnostic plots, obtain fitted values and compute predictions.

Background

Additive models offer a non-parametric generalization of linear models (Hastie & Tibshirani,
1990). They are flexible, interpretable, and avoid the curse of dimensionality, which means
that as the number of explanatory variables increases, neighbourhoods rapidly become sparse,
and many fewer training observations are available to estimate the regression function at any
one point.
If Y denotes the response variable, and X = (X1, . . . , Xd)

⊤ a vector of explanatory variables,
then an additive regression model postulates that

Y = µ+

d∑
j=1

gj(Xj) + σ ϵ , (1)
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where the error ϵ is independent of X and its distribution is centered at zero, σ > 0 is an
unknown scale parameter, the location parameter µ ∈ R, and gj : R → R are smooth
functions. Note that if for all 1 ≤ j ≤ d we have gj(Xj) = βj Xj for some βj ∈ R, then
Equation 1 reduces to a standard linear regression model.
The backfitting algorithm (Friedman & Stuetzle, 1981) can be used to fit the model in
Equation 1 with kernel regression estimators for the smooth components gj . It is based
on the following observation: under Equation 1 the additive components satisfy gj(x) =
E[Y − µ −

∑
ℓ̸=j gℓ(Xℓ)|Xj = x]. Thus, each gj is iteratively computed by smoothing the

partial residuals as functions of Xj .
It is well known that these estimators can be seriously affected by a relatively small proportion
of atypical observations in the training set. Boente et al. (2017) proposed a robust version
of backfitting, which is implemented in the RBF package. Intuitively, the idea is to use the
backfitting algorithm with robust smoothers, such as kernel-based M-estimators (Boente &
Fraiman, 1989). These robust estimators solve:

min
µ,g1,...,gd

E

[
ρ

(
Y − µ−

∑d
j=1 gj(Xj)

σ

)]
,

where the minimization is computed over µ ∈ R, and functions gj with E[gj(Xj)] = 0 and
E[g2j (Xj)] < ∞. The loss function ρ : R → R is even, non-decreasing and non-negative, and
σ is the residual scale parameter. In practice, we replace σ by a preliminary robust estimator
σ̂ (for example, the Median Absolute Deviations (MAD) of the residuals from a local median
fit) and the expected value by the average over the training set. Note that different choices
of the loss function ρ yield fits with varying robustness properties. Typical choices for ρ are
Tukey’s bisquare family and Huber’s loss (Maronna et al., 2018), and when ρ(t) = t2, this
approach reduces to the standard backfitting.
Simulation experiments reported in Boente et al. (2017) show that the robust backfitting
algorithm provides more reliable estimators than the classical approach when the training set
includes outliers in different proportions and settings. Those experiments also confirm that
the robust backfitting estimators are very similar to the standard ones when the data do not
contain atypical observations.
In the next section we illustrate the use of the robust backfitting algorithm as implemented
in the RBF package by applying it to a real data set. We also compare the results with those
obtained with the standard backfitting approach.

Illustration

The airquality data set contains 153 daily air quality measurements in the New York re-
gion between May and September, 1973 (Chambers et al., 1983). The interest is in modeling
the mean ozone (“Ozone”) concentration as a function of three potential explanatory vari-
ables: solar radiance in the frequency band 4000-7700 (“Solar.R”), wind speed (“Wind”) and
temperature (“Temp”). We focus on the 111 complete entries in the data set.
Since the plot in Figure 1 suggests that the relationship between ozone and the other variables
is not linear, we propose using an additive regression model of the form

Ozone = µ+ g1(Solar.R) + g2(Wind) + g3(Temp) + ε . (2)
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Figure 1: Scatter plot of the airquality data. The response variable is Ozone.

To fit the model above we use robust local linear kernel M-estimators with a Tukey’s bisquare
loss function. These choices are set using the arguments degree = 1 and type = 'Tukey
' in the call to the function backf.rob. The model is specified with the standard formula
notation in R. The argument windows is a vector with the bandwidths to be used with each
kernel smoother. To estimate optimal values we used a robust leave-one-out cross-validation
approach (Boente et al., 2017) which resulted in the following bandwidths:

R> bandw <- c(136.7285, 10.67314, 4.764985)

The code below computes the corresponding robust backfitting estimator for Equation 2:

R> data(airquality)
R> library(RBF)
R> ccs <- complete.cases(airquality)
R> fit.full <- backf.rob(Ozone ~ Solar.R + Wind + Temp, windows=bandw,

degree=1, type='Tukey', subset = ccs, data=airquality)

A different kernel M-estimator can be used in the robust backfitting algorithm by setting
type = 'Huber' in the call above. Unlike Tukey’s re-descending score function, Huber’s
function is monotone, and numerical experiments show that the resulting estimator typically
has larger bias. However, the corresponding objective function is convex and thus standard
algorithms can be used to find the global minimum. Our algorithm takes advantage of this to
construct a robust initial value to compute the more robust fit based on Tukey’s loss function.
For more details we refer the reader to Boente et al. (2017).
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The argument degree is an integer indicating the desired degree of the local polynomial
used in the kernel M-estimator. Its default value is 0 (which corresponds to a local constant
fit). Other arguments for backf.rob include convergence controls (epsilon: the maximum
allowed relative difference between consecutive estimates, and max.it: the maximum number
of iterations), and tuning parameters for the chosen loss function (k.h for Huber’s loss, and
k.t for Tukey’s). The default values for the latter two are those used to construct robust
estimators for linear regression that are 95% efficient compared with the least squares ones.
To compare the robust and classical additive model estimators we use the R package gam.
Optimal bandwidths were estimated using leave-one-out cross-validation as before.

R> library(gam)
R> aircomplete <- airquality[ccs, c('Ozone', 'Solar.R', 'Wind', 'Temp')]
R> fit.gam <- gam(Ozone ~ lo(Solar.R, span=.7) + lo(Wind, span=.7) +

lo(Temp, span=.5), data=aircomplete)

Figure 2 contains partial residuals plots and both sets of estimated functions: blue solid lines
indicate the robust fit and magenta dashed ones the classical one.

Figure 2: Partial residuals and fits for the airquality data. Robust and classical fits are shown
with solid blue and dashed magenta lines, respectively.

The two fits differ mainly in the estimated effects of wind speed and temperature. The
classical estimate for g3(Temp) is consistently lower than the robust counterpart for Temp ≥
85. For wind speed, the non-robust estimate ĝ2(Wind) suggests a higher effect over Ozone
concentrations for low wind speeds than the one given by the robust estimate, and the opposite
difference for higher speeds.
Residuals from a robust fit can generally be used to detect the presence of atypical observations
in the training data. Figure 3 displays a boxplot of these residuals. We note four possible
outlying points (indicated with red circles).

Martínez et al., (2021). RBF: An R package to compute a robust backfitting estimator for additive models. Journal of Open Source Software,
6(60), 2992. https://doi.org/10.21105/joss.02992

4

https://doi.org/10.21105/joss.02992


Figure 3: Boxplot of the residuals obtained using the robust fit. Potential outliers are highlighed
with solid red circles.

To investigate whether the differences between the robust and non-robust estimators are due to
the outliers, we recomputed the classical fit after removing them. Figure 4 shows the estimated
curves obtained with the classical estimator using the “clean” data together with the robust
ones (computed on the whole data set). Outliers are highlighted in red. Note that both fits
are now very close. An intuitive interpretation is that the robust fit has automatically down-
weighted potential outliers and produced estimates very similar to the classical ones applied
to the “clean” observations.

Figure 4: Plots of estimated curves and partial residuals. The solid blue lines indicate the robust
fit computed on the whole data set, while the classical estimators computed on the “clean” data are
shown with dashed magenta lines. Larger red circles indicate potential outliers.

Availability and Community Guidelines

The software is available at the Comprehensive R Archive Network CRAN and also at the
GitHub repository https://github.com/msalibian/RBF. The GitHub repository also contains
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detailed scripts reproducing the data analysis above, and another example is included in the
package vignette.
Contributions to this project can be submitted via pull requests on the GitHub repository.
Similarly, GitHub issues are the preferred venue to report suggestions and problems with the
current version of the software, and seek support.
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