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Summary

The R (R Core Team, 2020) package stabm provides functionality for quantifying the similarity
of two or more sets. For example, consider the two sets {A,B,C,D} and {A,B,C,E}.
Intuitively, these sets are quite similar because their overlap is large compared to the cardinality
of the two sets. The R package stabm implements functions to express the similarity of sets by
a real valued score. Quantifying the similarity of sets is useful for comparing sets of selected
features. But also for many other tasks like similarity analyses of gene sets or text corpora,
the R package stabm can be employed.
In the context of feature selection, the similarity of sets of selected features is assessed in
order to determine the stability of a feature selection algorithm. The stability of a feature
selection algorithm is defined as the robustness of the set of selected features towards different
data sets from the same data generating distribution (Kalousis et al., 2007). For stability
assessment, either m data sets from the same data generating process are available or m
data sets are created from one data set. The latter is often achieved with subsampling or
random perturbations (Awada et al., 2012). Then, the feature selection algorithm of interest
is applied to each of the m data sets, resulting in m feature sets. To quantify the stability of
the feature selection algorithm, the similarity of the m sets is calculated. In the context of
feature selection stability, set similarity measures are called stability measures.
The R package stabm provides an open-source implementation of the 20 stability measures
displayed in the table below. Argument checks are performed with checkmate (Lang, 2017)
to provide helpful error messages. It is publicly available on CRAN and on Github and it has
only a few dependencies.

Name Reference
stabilityDavis Davis et al. (2006)
stabilityDice Dice (1945)
stabilityHamming Dunne et al. (2002)
stabilityIntersectionCount Bommert & Rahnenführer (2020)
stabilityIntersectionGreedy Bommert & Rahnenführer (2020)
stabilityIntersectionMBM Bommert & Rahnenführer (2020)
stabilityIntersectionMean Bommert & Rahnenführer (2020)
stabilityJaccard Jaccard (1901)
stabilityKappa Carletta (1996)
stabilityLustgarten Lustgarten et al. (2009)
stabilityNogueira Nogueira et al. (2018)
stabilityNovovicova Novovičová et al. (2009)
stabilityOchiai Ochiai (1957)
stabilityPhi Nogueira & Brown (2016)
stabilitySechidis Sechidis et al. (2020)
stabilitySomol Somol & Novovičová (2008)
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Name Reference
stabilityUnadjusted Bommert & Rahnenführer (2020)
stabilityWald Wald et al. (2013)
stabilityYu Yu et al. (2012)
stabilityZucknick Zucknick et al. (2008)

Statement of Need

The R package stabm provides an implementation of many stability measures. For theoretical
and empirical comparative studies of the stability measures implemented in stabm, we refer
to Bommert et al. (2017), Bommert & Rahnenführer (2020), Bommert (2020), and Nogueira
et al. (2018). It has been demonstrated that considering the feature selection stability
when fitting a predictive model often is beneficial for obtaining models with high predictive
accuracy (Bommert et al., 2017; Bommert, 2020; Schirra et al., 2016). The stability measures
implemented in the R package stabm have been employed in Bommert et al. (2017), Bommert
et al. (2020), Bommert & Rahnenführer (2020), and Bommert (2020).

Related Software

A subset of the implemented stability measures is also available in other R or Python packages.
The R package sets (Meyer & Hornik, 2009) and the Python package scikit-learn (Pedregosa
et al., 2011) provide an implementation of the Jaccard index (Jaccard, 1901) to assess the
similarity of two sets. The Python package GSimPy (Zhang & Cao, 2020) implements the
Jaccard index, the Dice index (Dice, 1945), and the Ochiai index (Ochiai, 1957). The source
code for the publication Nogueira et al. (2018) provides an implementation of their stability
measure in R, Python, and Matlab.
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