
seaborn: statistical data visualization
Michael L. Waskom1

1 Center for Neural Science, New York UniversityDOI: 10.21105/joss.03021

Software
• Review
• Repository
• Archive

Editor: Lorena Pantano
Reviewers:

• @dangeles
• @Sara-ShiHo

Submitted: 29 January 2021
Published: 06 April 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

seaborn is a library for making statistical graphics in Python. It provides a high-level interface
to matplotlib and integrates closely with pandas data structures. Functions in the seaborn
library expose a declarative, dataset-oriented API that makes it easy to translate questions
about data into graphics that can answer them. When given a dataset and a specification
of the plot to make, seaborn automatically maps the data values to visual attributes such
as color, size, or style, internally computes statistical transformations, and decorates the plot
with informative axis labels and a legend. Many seaborn functions can generate figures with
multiple panels that elicit comparisons between conditional subsets of data or across different
pairings of variables in a dataset. seaborn is designed to be useful throughout the lifecycle of
a scientific project. By producing complete graphics from a single function call with minimal
arguments, seaborn facilitates rapid prototyping and exploratory data analysis. And by
offering extensive options for customization, along with exposing the underlying matplotlib
objects, it can be used to create polished, publication-quality figures.

Statement of need

Data visualization is an indispensable part of the scientific process. Effective visualizations
will allow a scientist both to understand their own data and to communicate their insights to
others (Tukey, 1977). These goals can be furthered by tools for specifying a graph that provide
a good balance between efficiency and flexibility. Within the scientific Python ecosystem, the
matplotlib (Hunter, 2007) project is very well established, having been under continuous
development for nearly two decades. It is highly flexible, offering fine-grained control over the
placement and visual appearance of objects in a plot. It can be used interactively through GUI
applications, and it can output graphics to a wide range of static formats. Yet its relatively
low-level API can make some common tasks cumbersome to perform. For example, creating
a scatter plot where the marker size represents a numeric variable and the marker shape
represents a categorical variable requires one to transform the size values to graphical units
and to loop over the categorical levels, separately invoking a plotting function for each marker
type.
The seaborn library offers an interface to matplotlib that permits rapid data exploration
and prototyping of visualizations while retaining much of the flexibility and stability that are
necessary to produce publication-quality graphics. It is domain-general and can be used to
visualize a wide range of datasets that are well-represented within a tabular format.

Example

The following example demonstrates the creation of a figure with seaborn. The example
makes use of one of the built-in datasets that are provided for documentation and generation of

Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.
03021

1

https://doi.org/10.21105/joss.03021
https://github.com/openjournals/joss-reviews/issues/3021
https://github.com/mwaskom/seaborn
https://doi.org/10.5281/zenodo.4645478
https://lpantano.github.io/
https://github.com/dangeles
https://github.com/Sara-ShiHo
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021


reproducible bug reports. It illustrates several of the features described in the Overview section,
including the declarative API, semantic mappings, faceting across subplots, aggregation with
error bars, and visual theme control.

import seaborn as sns
sns.set_theme(context="paper")
fmri = sns.load_dataset("fmri")
g = sns.relplot(

data=fmri, kind="line",
x="timepoint", y="signal",
hue="event", style="event", col="region",
height=3.5, aspect=.8,

)
g.savefig("paper_demo.pdf")

0 5 10 15
timepoint

0.1

0.0

0.1

0.2

0.3

si
gn

al

region = parietal

0 5 10 15
timepoint

region = frontal

event
stim
cue

Figure 1: An example seaborn figure demonstrating some of its key features. The image was
generated using seaborn v0.11.1.

Overview

Users interface with seaborn through a collection of plotting functions that share a common
API for plot specification and offer many more specific options for customization. These
functions range from basic plot types such as scatter and line plots to functions that apply
various transformations and abstractions, such as histogram binning, kernel density estimation,
and regression model fitting. Functions in seaborn are classified as either “axes-level” or
“figure-level.” Axes-level functions behave like most plotting functions in the matplotlib.
pyplot namespace. By default, they hook into the state machine that tracks a “current”
figure and add a layer to it, but they can also accept a matplotlib axes object to control
where the plot is drawn, similar to using the matplotlib “object-oriented” interface. Figure-
level functions create their own figure when invoked, allowing them to “facet” the dataset
by creating multiple conditional subplots, along with adding conveniences such as putting
the legend outside the space of the plot by default. Each figure-level function corresponds
to several axes-level functions that serve similar purposes, with a single parameter selecting

Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.
03021

2

https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021


the kind of plot to make. For example, the displot function can produce several different
representations of a distribution, including a histogram, kernel density estimate, or empirical
cumulative distribution function. The figure-level functions make use of a seaborn class that
controls the layout of the figure, mediating between the axes-level functions and matplotlib.
These classes are part of the public API and can be used directly for advanced applications.
One of the key features in seaborn is that variables in a dataset can be automatically
“mapped” to visual attributes of the graph. These transformations are referred to as “se-
mantic” mappings because they endow the attributes with meaning vis a vis the dataset. By
freeing the user from manually specifying the transformations – which often requires looping
and multiple function invocations when using matplotlib directly – seaborn allows rapid
exploration of multidimensional relationships. To further aid efficiency, the default parameters
of the mappings are opinionated. For example, when mapping the color of the elements in a
plot, seaborn infers whether to use a qualitative or quantitative mapping based on whether
the input data are categorical or numeric. This behavior can be further configured or even
overridden by setting additional parameters of each plotting function.
Several seaborn functions also apply statistical transformations to the input data before
plotting, ranging from estimating the mean or median to fitting a general linear model. When
data are transformed in this way, seaborn automatically computes and shows error bars to
provide a visual cue about the uncertainty of the estimate. Unlike many graphical libraries,
seaborn shows 95% confidence interval error bars by default, rather than standard errors. The
confidence intervals are computed with a bootstrap algorithm, allowing them to generalize over
many different statistics, and the default level allows the user to perform “inference by eye”
(Cumming & Finch, 2005). Historically, error bar specification has been relatively limited, but
a forthcoming release (v0.12) will introduce a new configuration system that makes it possible
to show nonparametric percentile intervals and scaled analytic estimates of standard error or
standard deviation statistics.
seaborn aims to be flexible about the format of its input data. The most convenient usage
pattern provides a pandas (McKinney, 2010) dataframe with variables encoded in a long-
form or “tidy” (Wickham, 2014) format. With this format, columns in the dataframe can
be explicitly assigned to roles in the plot, such as specifying the x and y positions of a
scatterplot along with size and shape semantics. Long-form data supports efficient exploration
and prototyping because variables can be assigned different roles in the plot without modifying
anything about the original dataset. But most seaborn functions can also consume and
visualize “wide-form” data, typically producing similar output to how the analogous matplot
lib function would interpret a 2D array (e.g., producing a boxplot where each box represents a
column in the dataframe) while making use of the index and column names to label the graph.
Using the label information in a pandas object can help make plots that are interpretable
without further tweaking – reducing the chance of interpretive errors – but seaborn also
accepts data from a variety of more basic formats, including numpy (Harris et al., 2020) arrays
and simple Python collection types.
seaborn also offers multiple built-in themes that users can select to modify the visual appear-
ance of their graphs. The themes make use of the matplotlib rcParams system, meaning
that they will take effect for any figure created using matplotlib, not just those made by
seaborn. The themes are defined by two disjoint sets of parameters that separately control
the style of the figure and the scaling of its elements (such as line widths and font sizes). This
separation makes it easy to generate multiple versions of a figure that are scaled for different
contexts, such as written reports and slide presentations. The theming system can also be
used to set a default color palette. As color is particularly important in data visualization and
no single set of defaults is universally appropriate, every plotting function makes it easy to
choose an alternate categorical palette or continuous gradient mapping that is well-suited for
the particular dataset and plot type. The seaborn documentation contains a tutorial on the
use of color in data visualization to help users make this important decision.
seaborn does not aim to completely encapsulate or replace matplotlib. Many useful

Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.
03021

3

https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021


graphs can be created through the seaborn interface, but more advanced applications –
such as defining composite figures with multiple arbitrary plot types – will require importing
and using matplotlib as well. Even when calling only seaborn functions, deeper cus-
tomization of the plot appearance is achieved by specifying parameters that are passed-
through to the underlying matplotlib functions, and tweaks to the default axis limits,
ticks, and labels are made by calling methods on the matplotlib object that axes-level
seaborn functions return. This approach is distinct from other statistical graphing sys-
tems, such as ggplot2 (Wickham, 2016). While seaborn offers some similar features
and, in some cases, uses similar terminology to ggplot2, it does not implement the for-
mal Grammar of Graphics and cannot be used to produce arbitrary visualizations. Rather, its
aim is to facilitate rapid exploration and prototyping through named functions and opinion-
ated defaults while allowing the user to leverage the considerable flexibility of matplotlib
to create more domain-specific graphics and to polish figures for publication. An exam-
ple of a successful use of this approach to produce reproducible figures can be found at
https://github.com/WagnerLabPapers/Waskom_PNAS_2017 (Waskom & Wagner, 2017).

Acknowledgements

M.L.W. has been supported by the National Science Foundation IGERT program (0801700)
and by the Simons Foundation as a Junior Fellow in the Simons Society of Fellows (527794).
Many others have helped improve seaborn by asking questions, reporting bugs, and con-
tributing code; thank you to this community.

References

Cumming, G., & Finch, S. (2005). Inference by eye: confidence intervals and how to read
pictures of data. The American Psychologist, 60(2), 170–180. https://doi.org/10.1037/
0003-066X.60.2.170

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt
& J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56).
https://doi.org/10.25080/Majora-92bf1922-00a

Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley. ISBN: 978-0201076165
Waskom, M. L., & Wagner, A. D. (2017). Distributed representation of context by intrinsic

subnetworks in prefrontal cortex. Proceedings of the National Academy of Sciences, 2030–
2035. https://doi.org/10.1073/pnas.1615269114

Wickham, H. (2014). Tidy data. Journal of Statistical Software, Articles, 59(10), 1–23.
https://doi.org/10.18637/jss.v059.i10

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
ISBN: 978-3-319-24277-4

Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.
03021

4

https://github.com/WagnerLabPapers/Waskom_PNAS_2017
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.25080/Majora-92bf1922-00a
https://worldcat.org/isbn/978-0201076165
https://doi.org/10.1073/pnas.1615269114
https://doi.org/10.18637/jss.v059.i10
https://worldcat.org/isbn/978-3-319-24277-4
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021

	Summary
	Statement of need
	Example
	Overview
	Acknowledgements
	References

