
Autosubmit GUI: A Javascript-based Graphical User
Interface to Monitor Experiments Workflow Execution
Wilmer Uruchi1, Miguel Castrillo1, and Daniel Beltrán1

1 Barcelona Supercomputing Center
DOI: 10.21105/joss.03049

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @djmitche
• @ikayz

Submitted: 22 December 2020
Published: 19 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Autosubmit GUI is a front-end software developed using Javascript and ReactJS that aims
to provide users with complex information from the workflow execution of scientific experi-
ments (managed by Autosubmit) in any system, but mainly High-Performance Computing
(HPC) platforms. Autosubmit (D. Manubens-Gil, 2016) is a Python-based workflow man-
ager able to handle complex tasks involving different sub-steps (e.g., scientific computational
experiments). These steps or jobs are executed in one or multiple computing systems (plat-
forms), from High-Performance Computers to small clusters or workstations. The workflow
manager is able to orchestrate the jobs that constitute the workflow while respecting their
dependencies and handling errors.
This front-end software consumes information served by an API (Autosubmit API (Autosub-
mit API, 2020)) that collects data from the execution of experiment workflows. An experiment
can be seen as a task that can be decomposed into different sub-steps with established inter-
dependencies. The execution of an experiment and its jobs may generate a high amount of
information that needs to be processed so users can visualize it. Autosubmit API summa-
rizes this information and presents it as API requests. Autosubmit GUI consumes these API
requests and shows the information available in a condensed, comprehensive, and dynamic
way. Autosubmit GUI uses three highly popular and useful libraries: FancyTree (FancyTree,
2020), vis.js (Vis.js, 2020), and react-google-charts (React Google Charts, 2020);
among other web resources that facilitate the visualization of information and information
updates.
The visual approach to experiment workflow management is not new in the High-Performance
Computing scenario. As two widely adopted tools, we have Cylc (Cylc, 2020) and ecFlow
(ecFlow, 2020). Autosubmit GUI attempts to present a development template for those
willing to work in a web environment to develop tools for progress monitoring purposes.

Statement of need

The number of jobs in an experiment workflow (managed by Autosubmit) ranges from one
to several thousand. The jobs can vary in the type of task they perform, from data retrieval
to complex climate simulations. The result of the execution of an experiment workflow is
usually large amounts of information. Access to this information is possible through the file
system or terminal commands (provided by Autosubmit). Experiment workflow monitoring
is possible through Autosubmit; the program checks the output of the experiment’s jobs,
logs, and job status in the remote platform or workstation. Then, Autosubmit summarizes
progress and status information in a graph representation as a pdf file. Autosubmit can
also show the workflow status information as a txt file where the jobs and their status are

Uruchi et al., (2021). Autosubmit GUI: A Javascript-based Graphical User Interface to Monitor Experiments Workflow Execution. Journal of
Open Source Software, 6(59), 3049. https://doi.org/10.21105/joss.03049

1

https://doi.org/10.21105/joss.03049
https://github.com/openjournals/joss-reviews/issues/3049
https://earth.bsc.es/gitlab/wuruchi/autosubmitreact
https://doi.org/10.6084/m9.figshare.14230052.v1
http://arfon.org/
https://github.com/djmitche
https://github.com/ikayz
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03049


listed. Although they fulfill the purpose of experiment monitoring, these ways of presenting
workflow information fall short once the experiments grow in the number of jobs involved
and associated dependencies. Therefore, our users needed a more optimal, accessible, and
interactive technology to access their experiments’ status and other artifacts product of the
jobs’ execution. Autosubmit can be installed by other HPC groups but would require some
configuration to address any particular setting in the new environment. Autosubmit GUI
consumes an API whose data is generated by Autosubmit at Barcelona Supercomputing
Center, but another workflow manager should be able to (in theory) generate similar infor-
mation. Then, Autosubmit GUI could be adapted to consume that information. The main
objective is that Autosubmit GUI could be used as a template or starting point for other
HPC groups that need a visual monitoring tool for their workflow managers, or as a natural
complement if they decide to use Autosubmit as a workflow manager.
The Autosubmit GUI development team chose a web architecture as a solution that would
allow to quickly deploy (and update) this service with minimum requirements for users. Fur-
thermore, this choice would allow developers to reuse existing technology, in the form of
open-source visualization libraries, to let Autosubmit GUI show information in a graphical
way. Since the amount of information we need to show is considerable, the development team
focused on optimization and little loading times.
As mentioned, the primary experiment workflow status representation generated by the users
of Autosubmit is a graph generated through Graphviz in a pdf file. Consequently, that was
the first representation we tried to mimic in Autosubmit GUI. For this purpose, we chose
vis.js, a proven Javascript library that implements graph representations for the provided
data. This library also provides a rich API to manipulate its representation and dynamically
update its data. In our implementation, we present several ways to access the vis.js objects
and adapt them to our necessities in concordance with the requirements of ReactJS. We avoid
unnecessary refreshes of the graph component by storing it in the ReactJS internal state. We
believe that our implementation can guide those willing to work with graph representations in
a web environment.
Later, Autosubmit GUI was required to implement an experiment workflow representation
that showed more information at first glance, arranging jobs hierarchically. As a result, we
decided to implement a tree view based on FancyTree, a Javascript library. This library
provides a rich API that allowed us to implement a structured visualization of the experiment
workflow. Again, we adapted this library to work smoothly with ReactJS. By directly accessing
the internal component infrastructure, we achieved smooth updates of the tree’s information.
It is also an excellent example of how to use the tools provided by this library. Moreover,
we use react-google-charts to display statistics generated by the experiment workflow
execution.
Javascript is a programming language that has taken over the Web and is becoming (if it is
not already) a standard. For our front-end purposes, it has all the tools that we needed and also
gives us access to a variety of useful extensions. The central vision of Autosubmit GUI was
to develop a graphical interface that showed as much information as possible at first glance;
moreover, this interface should be scalable, with additional required information taking an
area of the browser window. We decided that the interface should be divided into modules
that would be displayed in a tiled design. The interface should update the modules (tiles)
individually and independently without affecting general performance. ReactJS provides the
tools to accomplish this purpose, where we can translate our idea of modules to components.
So, it was the chosen framework.

Uruchi et al., (2021). Autosubmit GUI: A Javascript-based Graphical User Interface to Monitor Experiments Workflow Execution. Journal of
Open Source Software, 6(59), 3049. https://doi.org/10.21105/joss.03049

2

https://doi.org/10.21105/joss.03049


Main features

Figure 1: Autosubmit GUI main window.

• Users can search for experiments that match specific criteria: Currently active experi-
ments (those on execution), experiments belonging to a particular user, description of
experiments that contain a specific word, and other filters. Autosubmit GUI presents
the result in a main window Figure 1 where the user can monitor the experiment’s
progress and additional relevant information. Each experiment item gives direct access
to the experiment representation (tree view by default) or a quick view that displays
only the essential information. From the experiment item, there is an option to see a
summary of the experiment’s current progress.

• Users can see the representation of their experiment in three ways with some variations:

– Tree View Figure 2: Uses FancyTree to present the experiment jobs in a struc-
tured and hierarchical fashion.

– Graph View Figure 3: Uses vis.js to present the experiment jobs in a graph.
– Quick View: Uses FancyTree to present a browsable list of the experiment jobs.

Uruchi et al., (2021). Autosubmit GUI: A Javascript-based Graphical User Interface to Monitor Experiments Workflow Execution. Journal of
Open Source Software, 6(59), 3049. https://doi.org/10.21105/joss.03049

3

https://doi.org/10.21105/joss.03049


Figure 2: Tree View.

Figure 3: Graph View.

• All experiment representations allow searching for jobs by name or by patterns in the
job’s name using the * wildcard.

• The graph view presents representation variations for ease of usage.
• The graph and tree views allow the user to view detailed information about a job by

clicking on its associated node or item.

Uruchi et al., (2021). Autosubmit GUI: A Javascript-based Graphical User Interface to Monitor Experiments Workflow Execution. Journal of
Open Source Software, 6(59), 3049. https://doi.org/10.21105/joss.03049

4

https://doi.org/10.21105/joss.03049


• The graph view allows the user to select some nodes (jobs) and generate an Autosubmit
command to type in a terminal through the Change Status button.

• The tree view allows the user to select some items (jobs) and generate a command
through the Activate Selection Mode button.

• The user can set experiments that are ACTIVE (shown at the top of the page next to the
experiment identifier) to be automatically updated according to changes in real-time.
The user can do this by pushing the Start Job Monitor button. Then, Autosubmit
GUI will query the API from time to time and update the graph or tree representation
with the job changes. This functionality doesn’t prompt a full component rerender;
instead, the interface updates the nodes or items individually and independently.

• The user can visualize the last 100 lines of the experiment’s log.
• The interface provides statistics of the workflow execution through the Statistics tab

using react-google-charts.
• The interface provides performance metrics of the experiment in the Performance tab.

The metrics that the interface shows in this section, and their calculation, are based on
(Balaji & Wright, 2017).

• The interface displays historical data for the experiment and its indiviual jobs.

Acknowledgements

We acknowledge contributions from Francisco Doblas-Reyes, Kim Serradell, and all our Earth
Science Department users.

References

Autosubmit API. (2020). https://earth.bsc.es/gitlab/wuruchi/autosubmitreact/-/wikis/
Autosubmit-API

Balaji, M., V., & Wright, G. (2017). CPMIP: measurements of real computational per-
formance of Earth system models in CMIP6. Geosci. Model Dev., 10, 19–34. https:
//doi.org/10.5194/gmd-10-19-2017

Cylc: A general purpose workflow engine that orchestrates cycling workflows very efficiently.
(2020). https://confluence.ecmwf.int/display/ECFLOW/ecflow+home

D. Manubens-Gil, C. P., J. Vegas-Regidor. (2016). Seamless management of ensemble climate
prediction experiments on HPC platforms. 2016 International Conference on High Perfor-
mance Computing & Simulation (HPCS), Innsbruck. https://doi.org/10.1109/HPCSim.
2016.7568429

ecFlow: A client/server workflow package. (2020). https://confluence.ecmwf.int/display/
ECFLOW/ecflow+home

FancyTree: A JavaScript tree view / tree grid plugin with support for keyboard, inline editing,
filtering, checkboxes, drag’n’drop, and lazy loading. (2020). https://github.com/mar10/
fancytree/

React google charts: A declarative API to make rendering charts fun and easy. (2020).
https://react-google-charts.com/

Vis.js: A dynamic, browser based visualization library. (2020). https://visjs.org/

Uruchi et al., (2021). Autosubmit GUI: A Javascript-based Graphical User Interface to Monitor Experiments Workflow Execution. Journal of
Open Source Software, 6(59), 3049. https://doi.org/10.21105/joss.03049

5

https://earth.bsc.es/gitlab/wuruchi/autosubmitreact/-/wikis/Autosubmit-API
https://earth.bsc.es/gitlab/wuruchi/autosubmitreact/-/wikis/Autosubmit-API
https://doi.org/10.5194/gmd-10-19-2017
https://doi.org/10.5194/gmd-10-19-2017
https://confluence.ecmwf.int/display/ECFLOW/ecflow+home
https://doi.org/10.1109/HPCSim.2016.7568429
https://doi.org/10.1109/HPCSim.2016.7568429
https://confluence.ecmwf.int/display/ECFLOW/ecflow+home
https://confluence.ecmwf.int/display/ECFLOW/ecflow+home
https://github.com/mar10/fancytree/
https://github.com/mar10/fancytree/
https://react-google-charts.com/
https://visjs.org/
https://doi.org/10.21105/joss.03049

	Summary
	Statement of need
	Main features
	Acknowledgements
	References

