
PyArmadillo: a streamlined linear algebra library for
Python
Jason Rumengan1, 2, Terry Yue Zhuo3, and Conrad Sanderson1, 4

1 Data61/CSIRO, Australia 2 Queensland University of Technology, Australia 3 University of New
South Wales, Australia 4 Griffith University, Australia

DOI: 10.21105/joss.03051

Software
• Review
• Repository
• Archive

Editor: Matthew Sottile
Reviewers:

• @JaroslavHron
• @uellue

Submitted: 10 February 2021
Published: 15 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

PyArmadillo is a linear algebra library for the Python language, with the aim of closely mirroring
the programming interface of the widely used Armadillo C++ library, which in turn is delib-
erately similar to Matlab. PyArmadillo hence facilitates algorithm prototyping with Matlab-
like syntax directly in Python, and relatively straightforward conversion of PyArmadillo-based
Python code into performant Armadillo-based C++ code. The converted code can be used
for purposes such as speeding up Python-based programs in conjunction with pybind11 (Jakob
et al., 2017), or the integration of algorithms originally prototyped in Python into larger C++
codebases.
PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions
for manipulating data stored in the objects. Integer, floating point and complex numbers
are supported. Various matrix factorisations are provided through integration with LAPACK
(Anderson et al., 1999), or one of its high performance drop-in replacements such as Intel
MKL (Intel, 2016) or OpenBLAS (Zhang et al., 2016).

Statement of Need

Armadillo is a popular linear algebra and scientific computing library for the C++ language
(Sanderson & Curtin, 2018, 2016) that has three main characteristics: (i) a high-level pro-
gramming interface deliberately similar to Matlab, (ii) an expression evaluator (based on tem-
plate meta-programming) that automatically combines several operations to increase speed
and efficiency, and (iii) an efficient mapper between mathematical expressions and low-level
BLAS/LAPACK functions (Psarras et al., 2021). Matlab is widely used in both industrial
and academic contexts, providing a programming interface that allows mathematical expres-
sions to be written in a concise and natural manner (Linge & Langtangen, 2016), especially
in comparison to directly using low-level libraries such as LAPACK (Anderson et al., 1999).
In industrial settings, algorithms are often first prototyped in Matlab, before conversion into
another language, such as C++, for the purpose of integration into products. The similarity
of the programming interfaces between Armadillo and Matlab facilitates direct prototyping in
C++, as well as the conversion of research code into production environments. Armadillo is
also often used for implementing performance critical parts of software packages running un-
der the R environment for statistical computing (R Core Team, 2020), via the RcppArmadillo
bridge (Eddelbuettel & Sanderson, 2014).
Over the past few years, Python has become popular for data science and machine learning.
This partly stems from a rich ecosystem of supporting frameworks and packages, as well as
lack of licensing costs in comparison to Matlab. Python allows relatively quick prototyping of
algorithms, aided by its dynamically typed nature and the interpreted execution of user code,

Rumengan et al., (2021). PyArmadillo: a streamlined linear algebra library for Python. Journal of Open Source Software, 6(66), 3051.
https://doi.org/10.21105/joss.03051

1

https://doi.org/10.21105/joss.03051
https://github.com/openjournals/joss-reviews/issues/3051
https://gitlab.com/jason-rumengan/pyarma
https://doi.org/10.5281/zenodo.5564389
https://computing.llnl.gov/casc
https://github.com/JaroslavHron
https://github.com/uellue
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03051


avoiding time-consuming compilation into machine code. However, for the joint purpose of
algorithm prototyping and deployment, the flexibility of Python comes with two main issues:
(i) slow execution speed due to the interpreted nature of the language, (ii) difficulty with
integration of code written in Python into larger programs and/or frameworks written in
another language. The first issue can be somewhat addressed through conversion of Python-
based code into the low-level Cython language (Behnel et al., 2020). However, since Cython
is closely tied with Python, conversion of Python code into C++ may be preferred as it also
addresses the second issue, as well as providing a higher-level of abstraction.
PyArmadillo is aimed at: (i) users that prefer compact Matlab-like syntax rather than the
somewhat more verbose syntax provided by NumPy/SciPy (Harris et al., 2020; Virtanen et
al., 2020), and (ii) users that would like a straightforward conversion path to performant C++
code. More specifically, PyArmadillo aims to closely mirror the programming interface of the
Armadillo library, thereby facilitating the prototyping of algorithms with Matlab-like syntax
directly in Python. Furthermore, PyArmadillo-based Python code can be easily converted
into high-performance Armadillo-based C++ code. Due to the similarity of the programming
interfaces, the risk of introducing bugs in the conversion process is considerably reduced.
Moreover, conversion into C++ based code allows taking advantage of expression optimisation
performed at compile-time by Armadillo, resulting in further speedups. The resulting code
can be used in larger C++ programs, or used as a replacement of performance critical parts
within a Python program with the aid of the pybind11 interface layer (Jakob et al., 2017).

Functionality

PyArmadillo provides matrix objects for several distinct element types: integers, single- and
double-precision floating point numbers, as well as complex numbers. In addition to matrices,
PyArmadillo also has support for cubes (3 dimensional arrays), where each cube can be treated
as an ordered set of matrices. Multi-dimensional arrays beyond 3 dimensions are explicitly be-
yond the scope of PyArmadillo. Over 200 functions are provided for manipulating data stored
in the objects, covering the following areas: fundamental arithmetic operations, contiguous and
non-contiguous submatrix views, diagonal views, element-wise functions, scalar/vector/matrix
valued functions of matrices, generation of various vectors/matrices, statistics, signal process-
ing, storage of matrices in files, matrix decompositions/factorisations, matrix inverses, and
equation solvers. See the online documentation at https://pyarma.sourceforge.io/docs.html
for details. PyArmadillo matrices and cubes are convertible to/from NumPy arrays, allowing
users to tap into the wider Python data science ecosystem, including plotting tools such as
Matplotlib (Hunter, 2007).

Implementation

PyArmadillo relies on pybind11 (Jakob et al., 2017) for interfacing C++ and Python, as well
as on Armadillo for the underlying C++ implementation of matrix objects and associated
functions. Due to its expressiveness and relatively straightforward use, pybind11 was selected
over other interfacing approaches such as Boost.Python (Abrahams & Grosse-Kunstleve, 2003)
and manually writing C++ extensions for Python. In turn, Armadillo interfaces with low-level
routines in BLAS and LAPACK (Anderson et al., 1999), where BLAS is used for matrix
multiplication, and LAPACK is used for various matrix decompositions/factorisations and
equation solvers. As the low-level routines in BLAS and LAPACK are considered as the de
facto standard for numerical linear algebra, it is possible to use high performance drop-in
replacements such as Intel MKL (Intel, 2016) and OpenBLAS (Zhang et al., 2016).
PyArmadillo is open-source software, distributed under the Apache 2.0 license (Apache Soft-
ware Foundation, 2004), making it useful in both open-source and proprietary (closed-source)

Rumengan et al., (2021). PyArmadillo: a streamlined linear algebra library for Python. Journal of Open Source Software, 6(66), 3051.
https://doi.org/10.21105/joss.03051

2

https://pyarma.sourceforge.io/docs.html
https://doi.org/10.21105/joss.03051


contexts (St. Laurent, 2008). It can be obtained at https://pyarma.sourceforge.io or via the
Python Package Index in precompiled form.

Acknowledgements

We would like to thank our colleagues at Data61/CSIRO (Dan Pagendam, Dan Gladish,
Andrew Bolt, Piotr Szul) for providing feedback and testing.

References

Abrahams, D., & Grosse-Kunstleve, R. W. (2003). Building hybrid systems with
Boost.Python. C/C++ Users Journal, 21(7). https://www.osti.gov/biblio/815409

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz,
J., Greenbaum, A., Hammarling, S., McKenney, A., & Sorensen, D. (1999). LAPACK
users’ guide. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9780898719604

Apache Software Foundation. (2004). Apache license 2.0. http://www.apache.org/licenses/
LICENSE-2.0

Behnel, S., Bradshaw, R., Dalcín, L., Florisson, M., Makarov, V., & Seljebotn, D. S. (2020).
Cython. https://cython.org

Eddelbuettel, D., & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-
performance C++ linear algebra. Computational Statistics & Data Analysis, 71,
1054–1063. https://doi.org/10.1016/j.csda.2013.02.005

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Intel. (2016). Math Kernel Library (MKL). http://software.intel.com/en-us/intel-mkl/
Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – seamless operability between

C++11 and Python. In GitHub repository. GitHub. https://github.com/pybind/pybind11
Linge, S., & Langtangen, H. P. (2016). Programming for computations - MATLAB/Octave.

Springer. https://doi.org/10.1007/978-3-319-32452-4
Psarras, C., Barthels, H., & Bientinesi, P. (2021). The linear algebra mapping problem:

Current state of linear algebra languages and libraries. arXiv:1911.09421v2. https://arxiv.
org/abs/1911.09421

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. https://www.R-project.org

Sanderson, C., & Curtin, R. (2018). A user-friendly hybrid sparse matrix class in C++.
Lecture Notes in Computer Science (LNCS), Vol. 10931, 422–430. https://doi.org/10.
1007/978-3-319-96418-8_50

Sanderson, C., & Curtin, R. (2016). Armadillo: A template-based C++ library for linear
algebra. Journal of Open Source Software, 1, 26. https://doi.org/10.21105/joss.00026

Rumengan et al., (2021). PyArmadillo: a streamlined linear algebra library for Python. Journal of Open Source Software, 6(66), 3051.
https://doi.org/10.21105/joss.03051

3

https://pyarma.sourceforge.io
https://www.osti.gov/biblio/815409
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/1.9780898719604
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://cython.org
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
http://software.intel.com/en-us/intel-mkl/
https://github.com/pybind/pybind11
https://doi.org/10.1007/978-3-319-32452-4
https://arxiv.org/abs/1911.09421
https://arxiv.org/abs/1911.09421
https://www.R-project.org
https://doi.org/10.1007/978-3-319-96418-8_50
https://doi.org/10.1007/978-3-319-96418-8_50
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.03051


St. Laurent, A. (2008). Understanding open source and free software licensing. O’Reilly
Media.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scien-
tific computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/
s41592-019-0686-2

Zhang, X., Wang, Q., & Saar, W. (2016). OpenBLAS: An optimized BLAS library. In GitHub
repository. GitHub. https://github.com/xianyi/openblas

Rumengan et al., (2021). PyArmadillo: a streamlined linear algebra library for Python. Journal of Open Source Software, 6(66), 3051.
https://doi.org/10.21105/joss.03051

4

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/xianyi/openblas
https://doi.org/10.21105/joss.03051

	Summary
	Statement of Need
	Functionality
	Implementation
	Acknowledgements
	References

