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Summary

gmr is a Python library for Gaussian mixture regression (GMR). GMR is a regression approach
that models probability distributions rather than functions. Hence, it is possible to model
multimodal mappings.
In GMR we first learn a joint probability distribution p(x,y) of input x and output y through
expectation maximization (Dempster et al., 1977) and then compute the conditional distri-
bution p(y|x) to make predictions. Thus, training is the same procedure as in a standard
Gaussian mixture model (GMM).

Statement of Need

The library gmr is fully compatible with scikit-learn (Pedregosa et al., 2011). It has its own
implementation of expectation maximization (EM), but it can also be initialized with a GMM
from scikit-learn, which means that we can also initialize it from a Bayesian GMM of scikit-
learn. The prediction process for regression is not available in scikit-learn and, thus, will be
provided by gmr.
Note that while scikit-learn has the function GaussianMixture.predict, it does not perform
regression. This function computes the index of the Gaussian for which the inputs have the
highest probability. Furthermore, multimodal regression often requires a more complicated
interface to extract not just the mean but also individual Gaussians or sample from the
predicted distribution.
The library gmr provides a simple interface and several useful features to deal with multimodal
regression, mixtures of Gaussians, and multivariate Gaussian distributions:

• EM implementation that only requires numpy and scipy
• computation of conditional distributions
• sampling from confidence regions of multivariate Gaussians
• collapsing a GMM to a single Gaussian
• extraction of individual Gaussians from a (conditional) GMM
• plotting of covariance ellipses
• unscented transform (Uhlmann, 1995) to estimate the effect of a nonlinear function on

a Gaussian distribution

Multimodal regression and Gaussian mixture regression has been used mostly by the robotics
community. For example, inverse problems such as inverse kinematics cannot be easily modeled
with standard regression approaches. Furthermore, Gaussian mixture regression is the basis
of many programming by demonstration approaches (Billard et al., 2008).
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Background

Gaussian mixture regression via EM has been proposed first by Ghahramani & Jordan (1994).
Calinon et al. (2007) introduced the term Gaussian mixture regression in the context of
imitation learning for trajectories of robots and many publications that use GMR in this
domain followed. Stulp & Sigaud (2015) present Gaussian mixture regression in a more recent
survey.

Training

During the training phase we learn a Gaussian mixture model

p(x,y) =

K∑
k=1

πkNk(x,y|µxyk
,Σxyk)

through EM, where Nk(x,y|µxyk
,Σxyk) are Gaussian distributions with mean µxyk

and
covariance Σxyk, K is the number of Gaussians, and πk ∈ [0, 1] are priors that sum up to
one.

Prediction

Gaussian mixture regression can be used to predict distributions of variables y by computing
the conditional distribution p(y|x). The conditional distribution of each individual Gaussian

N (x,y|µxy,Σxy)

µxy =

(
µx

µy

)
, Σxy =

(
Σxx Σxy

Σyx Σyy

)
is defined by

µy|x = µy +ΣyxΣ
−1
xx(x− µx)

Σy|x = Σyy −ΣyxΣ
−1
xxΣxy.

In a Gaussian mixture model we compute the conditional distribution of each individual Gaus-
sian and their priors

πy|xk
=

Nk(x|µxk,Σxk)∑K
l=1 Nl(x|µxl,Σxl)

to obtain the conditional distribution

p(y|x) =
K∑

k=1

πy|xk
Nk(y|µy|xk

,Σy|xk
).

Examples

Here is an example of a dataset where multiple outputs y are valid predictions for one input
x. It was introduced by Bishop (1994).
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Figure 1: Multimodal regression.

On the left side of Figure 1 we see the training data and the fitted GMM indicated by ellipses
corresponding to its components. On the right side we see the predicted probability density
p(y|x = 0.5). There are three peaks that correspond to three different valid predictions. Each
peak is represented by at least one of the Gaussians of the GMM.
We can use GMR to represent demonstrated motions. Here is an example in 2D, in which we
have a dataset that is a sequence of positions x and corresponding velocities ẋ. We train a
GMM to represent p(x, ẋ). Then we can generate a new trajectory by iteratively sampling
ẋt ∼ p(ẋ|x = xt) and computing the next position as xt+1 = xt +∆tẋt.

Figure 2: Imitation learning.
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In Figure 2 we can see that in the middle of the eight we have multiple modes: one velocity
vector would lead to the left and one to the right. Sampling from the conditional GMM is only
one possible solution here. Another one would be to select the component that contributes
the most to the probability density and take its mean. When we sample, we often want to
ensure that we do not end up in a region of low probability. Hence, we can resample as long
as we are not in an α-confidence region, where α ∈ [0, 1]. This strategy is used here and is
directly provided by the library.
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