
PyPortfolioOpt: portfolio optimization in Python
Robert Andrew Martin1

1 University of Cambridge
DOI: 10.21105/joss.03066

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @omendezmorales
• @SteveDiamond

Submitted: 25 February 2021
Published: 07 May 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Portfolio construction is a critically important aspect of investment management. Even after
an investor selects a set of assets or return streams to invest in, it is a nontrivial task to
decide how much should be allocated to each. The expected return of the asset is certainly
an important factor, but the investor may also wish to consider the investment risks and the
co-dependence of asset returns.
Modern Portfolio Theory, introduced by Markowitz (1952), presents a mathematical framework
for maximizing a portfolio’s expected returns subject to a risk constraint (measuring risk with
the covariance matrix of asset returns). While optimization problems are difficult in general,
many portfolio optimization tasks can be framed as convex optimization problems, inviting
the use of a large body of theory and several efficient solving routines (Boyd & Vandenberghe,
2004).
PyPortfolioOpt is a python package that implements financial portfolio optimization tech-
niques, including classical mean-variance optimization (MVO) methods, Black-Litterman allo-
cation (Black & Litterman, 1991), and modern methods such as the machine learning-inspired
Hierarchical Risk Parity algorithm (López de Prado, 2016).
PyPortfolioOpt is currently being used by several financial services companies; it has been
downloaded over 160,000 times, cited in academic publications (Jansen, 2020; Snow, 2020),
and used in numerous online courses and tutorials (Putkov, 2019; Werger, 2021).

Statement of need

There are several open-source solvers for convex optimization problems (most of which have
python interfaces), for example, CVXOPT (Anderson et al., 2021), OSQP (Stellato et al.,
2020) and ECOS (Domahidi et al., 2013). However, these solvers require the user to write
their problem in a particular canonical form, creating a barrier to entry for those lacking the
prerequisite technical background.
Domain-specific languages like CVXPY (Diamond & Boyd, 2016) offer a significant improve-
ment in usability. CVXPY allows users to specify their convex optimization problem in intuitive
syntax; it then identifies the most suitable solver and rewrites the problem in the appropriate
canonical form (Agrawal et al., 2018). In the example below, CVXPY is used to maximize
the return of a long-only portfolio subject to the constraint that portfolio volatility may not
exceed 20%.

import cvxpy as cp

mu = ... # N x 1 vector of expected returns
S = ... # N x N covariance matrix

Martin, R. A., (2021). PyPortfolioOpt: portfolio optimization in Python. Journal of Open Source Software, 6(61), 3066. https://doi.org/10.
21105/joss.03066

1

https://doi.org/10.21105/joss.03066
https://github.com/openjournals/joss-reviews/issues/3066
https://github.com/robertmartin8/PyPortfolioOpt/
https://doi.org/10.5281/zenodo.4740186
https://vissarion.github.io
https://github.com/omendezmorales
https://github.com/SteveDiamond
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03066
https://doi.org/10.21105/joss.03066

w = cp.Variable(N) # weights to optimize
problem = cp.Problem(

objective=cp.Maximize(w @ mu),
constraints=[

w >= 0,
cp.sum(w) == 1,
cp.quad_form(w, S) <= 0.20 ** 2,

],
)
problem.solve()
weights = w.value

CVXPY requires the user to know the mathematical formulation of their optimization problem
and to construct the appropriate expressions from CVXPY atomic functions (e.g. cvxpy.sum
and cvxpy.quad_form above).
PyPortfolioOpt was built on the belief that there are many investors who understand the broad
concepts related to portfolio optimization (i.e. they know their objectives and constraints) but
are either unable or unwilling to solve the mathematical optimization problem. To that end,
PyPortfolioOpt seeks to abstract away as much of the mathematics as possible. Contrast the
previous CVXPY-based script to the PyPortfolioOpt solution to the same problem:

from pypfopt import EfficientFrontier

mu = ... # N x 1 vector of expected returns
S = ... # N x N covariance matrix
ef = EfficientFrontier(mu, S, weight_bounds=(0, 1))
weights = ef.efficient_risk(target_volatility=0.20)

Prior to the release of PyPortfolioOpt, there were several implementations of portfolio op-
timization routines in Python. However, to the best of our knowledge, PyPortfolioOpt was
the first project offering an API for general portfolio optimization (i.e. a library rather than a
script).

Methods

A full discussion of the package’s functionality may be found on the documentation web-
site (Martin, 2021) – the documentation is open-source and hosted by ReadTheDocs. This
notwithstanding, we provide a brief survey of the methods available in PyPortfolioOpt v1.4.1:

• Expected returns: simple methods for estimating expected asset returns
• Risk models: methods for estimating the covariance matrix of asset returns, such as

Ledoit-Wolf shrinkage (Ledoit & Wolf, 2004)
• Mean-variance optimization with a flexible API for adding constraints
• General efficient frontier:

– Mean-semivariance optimization (Estrada, 2008; Markowitz et al., 2020)
– Mean-CVaR optimization (Rockafellar & Uryasev, 2000)
– Support for custom optimization problems, e.g minimizing tracking error

• Black-Litterman allocation (Black & Litterman, 1991)
• Hierarchical Risk Parity (López de Prado, 2016)
• Critical Line Algorithm (Bailey & López de Prado, 2013)

Martin, R. A., (2021). PyPortfolioOpt: portfolio optimization in Python. Journal of Open Source Software, 6(61), 3066. https://doi.org/10.
21105/joss.03066

2

https://doi.org/10.21105/joss.03066
https://doi.org/10.21105/joss.03066

• Post-processing: helper methods for converting optimal weights into a discrete allocation
• Plotting routines to visualise the efficient frontier

In the investment management industry, market participants are often incentivised to keep their
work proprietary to reduce alpha decay. To that end, PyPortfolioOpt has been designed with
modularity in mind, such that users can “plug-in” their own innovations when appropriate while
deferring to standard methods elsewhere. PyPortfolioOpt integrates seamlessly with pandas
dataframes (McKinney, 2010) and NumPy arrays (Harris et al., 2020), which are commonly
used in data analysis. Figure 1 summarises the overall workflow of PyPortfolioOpt:

Figure 1: PyPortfolioOpt’s modular design allows the package to be integrated with proprietary risk
models, return estimates, and constraints.

PyPortfolioOpt is actively maintained and developed. The current feature roadmap includes
conditional drawdown optimization (Chekhlov et al., 2005), risk parity portfolios (Spinu,
2013), higher moment optimization (Harvey et al., 2010), and factor models.

Acknowledgements

We would like to thank the following individuals for their contributions to the package’s
functionality and usability (in no particular order): Philipp Schiele, Nicolas Knudde, Felipe
Schneider, Carl Peasnell, Rich Caputo, Dingyuan Wang, Pat Newell, Aditya Bhutra, Thomas
Schmelzer, and any future contributors. The CVXPY team, in particular Steven Diamond,
have been ever-supportive.
We further acknowledge Marcos López de Prado, whose code for the Critical Line Algorithm
and Hierarchical Risk Parity has been used with permission.
Finally, we are grateful to all of the PyPortfolioOpt’s users. Their comments and feedback
have been instrumental in the improvement of the package.

Martin, R. A., (2021). PyPortfolioOpt: portfolio optimization in Python. Journal of Open Source Software, 6(61), 3066. https://doi.org/10.
21105/joss.03066

3

https://doi.org/10.21105/joss.03066
https://doi.org/10.21105/joss.03066

References

Agrawal, A., Verschueren, R., Diamond, S., & Boyd, S. (2018). A Rewriting System for
Convex Optimization Problems. Journal of Control and Decision, 5(1), 42–60.

Anderson, M. S., Dahl, J., & Vandenberghe, L. (2021). CVXOPT: A Python package for
convex optimization. http://cvxopt.org/

Bailey, D. H., & López de Prado, M. (2013). An Open-Source Implementation of the Critical-
Line Algorithm for Portfolio Optimization. Algorithms, 6(1), 169–196. https://doi.org/
10.3390/a6010169

Black, F., & Litterman, R. B. (1991). Asset Allocation. The Journal of Fixed Income, 1(2),
7–18. https://doi.org/10.3905/jfi.1991.408013

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
ISBN: 0521833787

Chekhlov, A., Uryasev, S., & Zabarankin, M. (2005). Drawdown Measure in Portfolio
Optimization. International Journal of Theoretical and Applied Finance, 8(01), 13–58.
https://doi.org/10.1142/S0219024905002767

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83), 1–5.

Domahidi, A., Chu, E., & Boyd, S. (2013). ECOS: An SOCP solver for embedded systems.
European Control Conference (ECC), 3071–3076. https://doi.org/10.23919/ECC.2013.
6669541

Estrada, J. (2008). Mean-Semivariance Optimization: A Heuristic Approach. Journal of
Applied Finance, 18(1). https://doi.org/10.2139/ssrn.1028206

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., R’ıo, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Harvey, C., Liechty, J., Liechty, M., & Muller, P. (2010). Portfolio selection with higher
moments. Quantitative Finance, 10(5), 469–485. https://EconPapers.repec.org/RePEc:
taf:quantf:v:10:y:2010:i:5:p:469-485

Jansen, S. (2020). Machine Learning for Algorithmic Trading (2nd ed.). Packt Publishing.
ISBN: 9781839217715

Ledoit, O., & Wolf, M. (2004). Honey, I shrunk the sample covariance matrix. The Journal
of Portfolio Management, 30(4), 110–119. https://doi.org/10.3905/jpm.2004.110

López de Prado, M. (2016). Building Diversified Portfolios that Outperform Out of Sample.
The Journal of Portfolio Management, 42(4), 59–69. https://doi.org/10.3905/jpm.2016.
42.4.059

Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7(1), 77–91. https://
EconPapers.repec.org/RePEc:bla:jfinan:v:7:y:1952:i:1:p:77-91

Markowitz, H., Starer, D., Fram, H., & Gerber, S. (2020). Avoiding the Downside: A Practical
Review of the Critical Line Algorithm for Mean–Semivariance Portfolio Optimization. In
HANDBOOK OF APPLIED INVESTMENT RESEARCH (pp. 369–415). World Scientific
Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789811222634_0017

Martin, R. A. (2021). PyPortfolioOpt documentation. https://pyportfolioopt.readthedocs.
io/en/latest/

Martin, R. A., (2021). PyPortfolioOpt: portfolio optimization in Python. Journal of Open Source Software, 6(61), 3066. https://doi.org/10.
21105/joss.03066

4

http://cvxopt.org/
https://doi.org/10.3390/a6010169
https://doi.org/10.3390/a6010169
https://doi.org/10.3905/jfi.1991.408013
https://worldcat.org/isbn/0521833787
https://doi.org/10.1142/S0219024905002767
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.2139/ssrn.1028206
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:5:p:469-485
https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:5:p:469-485
https://worldcat.org/isbn/9781839217715
https://doi.org/10.3905/jpm.2004.110
https://doi.org/10.3905/jpm.2016.42.4.059
https://doi.org/10.3905/jpm.2016.42.4.059
https://EconPapers.repec.org/RePEc:bla:jfinan:v:7:y:1952:i:1:p:77-91
https://EconPapers.repec.org/RePEc:bla:jfinan:v:7:y:1952:i:1:p:77-91
https://doi.org/10.1142/9789811222634_0017
https://pyportfolioopt.readthedocs.io/en/latest/
https://pyportfolioopt.readthedocs.io/en/latest/
https://doi.org/10.21105/joss.03066
https://doi.org/10.21105/joss.03066

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. In Stéfan van
der Walt & Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference
(pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a

Putkov, A. (2019). Portfolio optimization in Modern Portfolio Theory. In Refinitiv Devel-
oper Community. Refinitiv. https://developers.refinitiv.com/en/article-catalog/article/
portfolio-optimization-modern-portfolio-theory

Rockafellar, R., & Uryasev, S. (2000). Optimization of Conditional Value-At-Risk. Journal of
Risk, 2, 21–42.

Snow, D. (2020). Machine Learning in Asset Management - Part 2: Portfolio Construction
- Weight Optimization. The Journal of Financial Data Science, 2(2), 17–24. https:
//doi.org/10.3905/jfds.2020.1.029

Spinu, F. (2013). An Algorithm for Computing Risk Parity Weights. Available at SSRN
2297383. https://doi.org/10.2139/ssrn.2297383

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: An operator
splitting solver for quadratic programs. Mathematical Programming Computation, 12(4),
637–672. https://doi.org/10.1007/s12532-020-00179-2

Werger, C. (2021). Introduction to Portfolio Analysis in Python. In DataCamp. https:
//www.datacamp.com/courses/introduction-to-portfolio-analysis-in-python

Martin, R. A., (2021). PyPortfolioOpt: portfolio optimization in Python. Journal of Open Source Software, 6(61), 3066. https://doi.org/10.
21105/joss.03066

5

https://doi.org/10.25080/Majora-92bf1922-00a
https://developers.refinitiv.com/en/article-catalog/article/portfolio-optimization-modern-portfolio-theory
https://developers.refinitiv.com/en/article-catalog/article/portfolio-optimization-modern-portfolio-theory
https://doi.org/10.3905/jfds.2020.1.029
https://doi.org/10.3905/jfds.2020.1.029
https://doi.org/10.2139/ssrn.2297383
https://doi.org/10.1007/s12532-020-00179-2
https://www.datacamp.com/courses/introduction-to-portfolio-analysis-in-python
https://www.datacamp.com/courses/introduction-to-portfolio-analysis-in-python
https://doi.org/10.21105/joss.03066
https://doi.org/10.21105/joss.03066

	Summary
	Statement of need
	Methods
	Acknowledgements
	References

