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Summary

Portfolio construction is a critically important aspect of investment management. Even after
an investor selects a set of assets or return streams to invest in, it is a nontrivial task to
decide how much should be allocated to each. The expected return of the asset is certainly
an important factor, but the investor may also wish to consider the investment risks and the
co-dependence of asset returns.

Modern Portfolio Theory, introduced by Markowitz (1952), presents a mathematical framework
for maximizing a portfolio’s expected returns subject to a risk constraint (measuring risk with
the covariance matrix of asset returns). While optimization problems are difficult in general,
many portfolio optimization tasks can be framed as convex optimization problems, inviting
the use of a large body of theory and several efficient solving routines (Boyd & Vandenberghe,
2004).

PyPortfolioOpt is a python package that implements financial portfolio optimization tech-
niques, including classical mean-variance optimization (MVO) methods, Black-Litterman allo-
cation (Black & Litterman, 1991), and modern methods such as the machine learning-inspired
Hierarchical Risk Parity algorithm (Lépez de Prado, 2016).

PyPortfolioOpt is currently being used by several financial services companies; it has been
downloaded over 160,000 times, cited in academic publications (Jansen, 2020; Snow, 2020),
and used in numerous online courses and tutorials (Putkov, 2019; Werger, 2021).

Statement of need

There are several open-source solvers for convex optimization problems (most of which have
python interfaces), for example, CVXOPT (Anderson et al., 2021), OSQP (Stellato et al.,
2020) and ECOS (Domahidi et al., 2013). However, these solvers require the user to write
their problem in a particular canonical form, creating a barrier to entry for those lacking the
prerequisite technical background.

Domain-specific languages like CVXPY (Diamond & Boyd, 2016) offer a significant improve-
ment in usability. CVXPY allows users to specify their convex optimization problem in intuitive
syntax; it then identifies the most suitable solver and rewrites the problem in the appropriate
canonical form (Agrawal et al., 2018). In the example below, CVXPY is used to maximize
the return of a long-only portfolio subject to the constraint that portfolio volatility may not
exceed 20%.

import cvxpy as cp

mu= ... # N ¢ 1 vector of expected returns
S= ... # N ¢ N covariance matric
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w = cp.Variable(N) # weights to optimize
problem = cp.Problem(
objective=cp.Maximize(w @ mu),
constraints=[
w >= 0,
cp.sum(w) == 1,
cp.quad_form(w, S) <= 0.20 *x 2,
1,
)
problem.solve()
weights = w.value

CVXPY requires the user to know the mathematical formulation of their optimization problem
and to construct the appropriate expressions from CVXPY atomic functions (e.g. cvxpy . sum
and cvxpy.quad_form above).

PyPortfolioOpt was built on the belief that there are many investors who understand the broad
concepts related to portfolio optimization (i.e. they know their objectives and constraints) but
are either unable or unwilling to solve the mathematical optimization problem. To that end,
PyPortfolioOpt seeks to abstract away as much of the mathematics as possible. Contrast the
previous CVXPY-based script to the PyPortfolioOpt solution to the same problem:

from pypfopt import EfficientFrontier

mu = ... # Nz 1 vector of expected returns

S= ... # N ¢ N covariance matric

ef = EfficientFrontier(mu, S, weight_bounds=(0, 1))
weights = ef.efficient_risk(target_volatility=0.20)

Prior to the release of PyPortfolioOpt, there were several implementations of portfolio op-
timization routines in Python. However, to the best of our knowledge, PyPortfolioOpt was
the first project offering an API for general portfolio optimization (i.e. a library rather than a
script).

Methods

A full discussion of the package's functionality may be found on the documentation web-
site (Martin, 2021) — the documentation is open-source and hosted by ReadTheDocs. This
notwithstanding, we provide a brief survey of the methods available in PyPortfolioOpt v1.4.1:

= Expected returns: simple methods for estimating expected asset returns

= Risk models: methods for estimating the covariance matrix of asset returns, such as
Ledoit-Wolf shrinkage (Ledoit & Wolf, 2004)

= Mean-variance optimization with a flexible API for adding constraints

= General efficient frontier:

— Mean-semivariance optimization (Estrada, 2008; Markowitz et al., 2020)
— Mean-CVaR optimization (Rockafellar & Uryasev, 2000)
— Support for custom optimization problems, e.g minimizing tracking error

= Black-Litterman allocation (Black & Litterman, 1991)
= Hierarchical Risk Parity (Lépez de Prado, 2016)
= Critical Line Algorithm (Bailey & Lépez de Prado, 2013)
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= Post-processing: helper methods for converting optimal weights into a discrete allocation
= Plotting routines to visualise the efficient frontier

In the investment management industry, market participants are often incentivised to keep their
work proprietary to reduce alpha decay. To that end, PyPortfolioOpt has been designed with
modularity in mind, such that users can “plug-in" their own innovations when appropriate while
deferring to standard methods elsewhere. PyPortfolioOpt integrates seamlessly with pandas
dataframes (McKinney, 2010) and NumPy arrays (Harris et al., 2020), which are commonly
used in data analysis. Figure 1 summarises the overall workflow of PyPortfolioOpt:
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Figure 1: PyPortfolioOpt's modular design allows the package to be integrated with proprietary risk
models, return estimates, and constraints.

PyPortfolioOpt is actively maintained and developed. The current feature roadmap includes
conditional drawdown optimization (Chekhlov et al., 2005), risk parity portfolios (Spinu,
2013), higher moment optimization (Harvey et al., 2010), and factor models.
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