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Summary
The starry_process code implements an interpretable Gaussian process (GP) for modeling
variability in stellar light curves. As dark starspots rotate in and out of view, the total flux
received from a distant star will change over time. Unresolved flux time series therefore encode
information about the spatial structure of features on the stellar surface. The starry_proce
ss software package allows one to easily model the flux variability due to starspots, whether
one is interested in understanding the properties of these spots or marginalizing over the
stellar variability when it is treated as a nuisance signal. The main difference between the GP
implemented here and typical GPs used to model stellar variability is the explicit dependence of
our GP on physical properties of the star, such as its period, inclination, and limb darkening
coefficients, and on properties of the spots, such as their radius and latitude distributions
(see Figure 1). This code is the Python implementation of the interpretable GP algorithm
developed in Luger, Foreman-Mackey, & Hedges (2021).

(a)

0 1 2 3 4
rotations

100

0

100

flu
x 

[p
pt

]

(b)

0 1 2 3 4
rotations

50

0

50

flu
x 

[p
pt

]

0.50

0.75

1.00

in
te

ns
ity

15
30
45
60
75
90

0.50

0.75

1.00

in
te

ns
ity

15
30
45
60
75
90

Figure 1: Five random samples from our GP (columns) conditioned on two different hyperparameter
vectors θθθ• (rows). The samples are shown on the surface of the star in a Mollweide projection
alongside the corresponding light curves viewed at several different inclinations. (a) Samples from a
GP describing a star with small mid-latitude spots. (b) Samples from a GP describing a star with
larger high-latitude spots.

Statement of need
Mapping the surfaces of stars using time series measurements is a fundamental problem in
modern time-domain stellar astrophysics. This inverse problem is ill-posed and computationally
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intractable, but in the associated AAS Journals publication submitted in parallel to this paper
(Luger, Foreman-Mackey, & Hedges, 2021), we derive an interpretable effective Gaussian
Process (GP) model for this problem that enables robust probabilistic characterization of
stellar surfaces using photometric time series observations. Our model builds on previous
work by Perger et al. (2020) on semi-interpretable Gaussian processes for stellar timeseries
data and by Morris (2020) on approximate inference for large ensembles of stellar light curves.
Implementation of our model requires the efficient evaluation of a set of special functions
and recursion relations that are not readily available in existing probabilistic programming
frameworks. The starry_process package provides the necessary elements to perform this
analysis with existing and forthcoming astronomical datasets.

Implementation
We implement our interpretable GP in the user-friendly Python package starry_process,
which can be installed via pip or from source on GitHub. The code is thoroughly unit-tested
and well documented, with examples on how to use the GP in custom inference problems.
As discussed in the associated AAS Journals publication (Luger, Foreman-Mackey, & Hedges,
2021), users can choose, among other options, whether or not to marginalize over the stellar
inclination and whether or not to model a normalized process. Users can also choose the
spherical harmonic degree of the expansion, although it is recommended to use lmax = 15
(see below). Users may compute the mean vector and covariance matrix in either the spherical
harmonic basis or the flux basis, or they may sample from it or use it to compute marginal
likelihoods. Arbitrary order limb darkening is implemented following Agol et al. (2020).
The code was designed to maximize the speed and numerical stability of the computation.
Although the computation of the GP covariance involves many layers of nested sums over
spherical harmonic coefficients, these may be expressed as high-dimensional tensor products,
which can be evaluated efficiently on modern hardware. Many of the expressions can also be
either pre-computed or computed recursively. To maximize the speed of the algorithm, the
code is implemented in hybrid C++/Python using the just-in-time compilation capability of the
Theano package (Theano Development Team, 2016). Since all equations derived here have
closed form expressions, these can be autodifferentiated in a straightforward and numerically
stable manner, enabling the computation of backpropagated gradients within Theano. As
such, starry_process is designed to work out-of-the box with Theano-based inference tools
such as PyMC3 for NUTS/HMC or ADVI sampling (Salvatier et al., 2016).
Figure 2 shows the computational scaling of the Python implementation of the algorithm
for the case where we condition the GP on a specific value of the inclination (blue) and the
case where we marginalize over inclination (orange). Both curves show the time in seconds to
compute the likelihood (averaged over many trials to obtain a robust estimate) as a function
of the number of points K in a single light curve. For K ≲ 100, the computation time
is constant at 10 − 30 ms for both algorithms. This is the approximate time (on a typical
modern laptop) taken to compute the GP covariance matrix given a set of hyperparameters
θθθ•. For larger values of K, the cost approaches a scaling of K2.6, which is dominated by the
factorization of the covariance matrix and the solve operation to compute the likelihood. The
likelihood marginalized over inclination is only slightly slower to compute, thanks to the tricks
discussed in Luger, Foreman-Mackey, & Hedges (2021).
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Figure 2: Evaluation time in seconds for a single log-likelihood computation as a function of the
number of points K in each light curve when conditioning on a value of the inclination (blue) and
when marginalizing over the inclination (orange). At lmax = 15, computation of the covariance matrix
of the GP takes between 30ms and 60ms on a typical laptop. The dashed line shows the asymptotic
scaling of the algorithm, which is due to the Cholesky factorization and solve operations.
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Figure 3: Log of the condition number of the covariance in the spherical harmonic basis as a function
of the spherical harmonic degree of the expansion, lmax. Different lines correspond to different values
of θθθ• drawn from a uniform prior (see text for details). In the majority of the cases, the matrix
becomes ill-conditioned above lmax = 15.

Many modern GP packages (e.g., Ambikasaran et al., 2015; Foreman-Mackey et al., 2017)
have significantly better asymptotic scalings, but these are usually due to specific structure
imposed on the kernel functions, such as the assumption of stationarity. Our kernel structure is
determined by the physics (or perhaps more accurately, the geometry) of stellar surfaces, and
its nonstationarity is a consequence of the normalization step in relative photometry (Luger,
Foreman-Mackey, Hedges, & Hogg, 2021). Moreover, and unlike the typical kernels used for
GP regression, our kernel is a nontrivial function of the hyperparameters θθθ•, so its computation
is necessarily more expensive. Nevertheless, the fact that our GP may be used for likelihood
evaluation in a small fraction of a second for typical datasets (K ∼ 1, 000) makes it extremely
useful for inference.
Our algorithm is also numerically stable over nearly all of the prior volume up to lmax = 15.
Figure 3 shows the log of the condition number of the covariance matrix in the spherical
harmonic basis as a function of the spherical harmonic degree of the expansion for 100 draws
from a uniform prior over the domain of the hyperparameters. The condition number is nearly
constant up to lmax = 15 in almost all cases; above this value, the algorithm suddenly becomes
unstable and the covariance is ill-conditioned. The instability occurs within the computation
of the latitude and longitude moment integrals and is likely due to the large number of
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operations involving linear combinations of hypergeometric and gamma functions. While it
may be possible to achieve stability at higher values of lmax via careful reparametrization of
some of those equations, we find that lmax = 15 is high enough for most practical purposes.
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