
MUQ: The MIT Uncertainty Quantification Library
Matthew Parno∗1, Andrew Davis2, and Linus Seelinger3

1 Department of Mathematics, Dartmouth College, Hanover, NH USA 2 Courant Institute of
Mathematical Sciences, New York University, New York, NY USA 3 Institute for Scientific
Computing, Heidelberg University, Heidelberg, Germany

DOI: 10.21105/joss.03076

Software
• Review
• Repository
• Archive

Editor: Pierre de Buyl
Reviewers:

• @martinmodrak
• @georgiastuart

Submitted: 26 February 2021
Published: 09 December 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Scientists and engineers frequently rely on mathematical and numerical models to interpret
observational data, forecast system behavior, and make decisions. However, unknown and
neglected physics, limited and noisy data, and numerical error result in uncertain model pre-
dictions. The MIT Uncertainty Quantification library (MUQ) is a modular software framework
for defining and solving uncertainty quantification problems involving complex models. MUQ
is written in C++ but uses pybind11 (Jakob et al., 2017) to provide a nearly comprehensive
Python interface. Users can access nearly all of MUQ’s capabilities from either language.
MUQ provides users many commonly used UQ tools and its modular design allows devel-
opers to easily modify, extend, and advance existing algorithms. For example, MUQ allows
exact sampling of non-Gaussian distributions (e.g., Markov chain Monte Carlo and impor-
tance sampling), approximating computationally intensive forward models (e.g., polynomial
chaos expansions and Gaussian process regression), working with integral covariance operators
(e.g., Gaussian processes and Karhunen-Loève decompositions), and characterizing predictive
uncertainties. The software is designed to support algorithm developers who want to easily
construct new algorithms by exploiting a wide variety of existing algorithmic building blocks.
Many UQ algorithms are model agnostic: Different physics-based or statistical models can
be substituted into the algorithm based on the application. Therefore, MUQ enables users to
quickly implement new models and exploit state-of-the art UQ algorithms.
A suite of documented examples, including Gaussian process regression of Mauna Loa C02 ob-
servations, global sensitivity analysis of an Euler-Bernoulli beam, and a hierarchical Bayesian
model of groundwater pump-test data, are provided to guide users through the process of
implementing their own models and leveraging MUQ’s UQ algorithms on quasi-realistic ap-
plications.

Statement of need

Scientists and engineers are increasingly using physical and statistical models to inform policy,
system design, and experiments. Although useful tools, models are inherently error prone and
assessing predictive capabilities and robustness requires rigorous uncertainty quantification
(UQ). The last decade has seen an explosion in the number and complexity of algorithms
for characterizing various sources of uncertainty (e.g, Kennedy & O’Hagan (2001), Conrad &
Marzouk (2013), Giles (2008), Sargsyan et al. (2019), Cotter et al. (2013), Cui et al. (2016),
Han & Liu (2018), Detommaso et al. (2018)). The complexity of many recent advancements
makes it difficult to rigorously compare new algorithms against the current state-of-the-art
and for users to leverage these new tools on practical applications. Likewise, many interesting

∗Corresponding Author.

Parno et al., (2021). MUQ: The MIT Uncertainty Quantification Library. Journal of Open Source Software, 6(68), 3076. https://doi.org/10.
21105/joss.03076

1

https://doi.org/10.21105/joss.03076
https://github.com/openjournals/joss-reviews/issues/3076
https://bitbucket.org/mituq/muq2.git
https://doi.org/10.5281/zenodo.5770267
http://pdebuyl.be/
https://github.com/martinmodrak
https://github.com/georgiastuart
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03076
https://doi.org/10.21105/joss.03076


models are developed, but due to a lack of a common interface they are often not widely
used. MUQ aims to reduce the gap between algorithmic research and application by providing
a software pipeline between the algorithmic development community and UQ practitioners.
The goal is to reduce the costly and error prone practice of reimplementing state-of-the-
art techniques, lower the barriers preventing widespread use of cutting-edge techniques, and
provide an algorithm-agnostic model interface. MUQ leverages well-known packages such
as Eigen3 (Guennebaud et al., 2010), Stan Math (Carpenter et al., 2015), NLOpt (Johnson,
2007), Sundials (Hindmarsh et al., 2005), Nanoflann (Blanco & Rai, 2014), and boost (Boost,
2015), to help make this possible.

Figure 1: MUQ allows for complicated models to be constructed by connecting model components
on a graph. Here is a possible graph for a Bayesian inverse problem built on a model for groundwater
flow. MUQ treats each box as a black-box, but if all components can provide derivative information
individually, e.g., through adjoint methods, then MUQ can compute gradients, Jacobians, and Hessian
actions through the entire graph.

While MUQ is capable of solving both forward and inverse UQ problems, its primary focus is
solving of Bayesian inverse problems with computationally expensive models, as demonstrated
in Davis et al. (2021), and potentially high dimensional parameter spaces. In comparison,
other MCMC and UQ packages, such as Stan (Carpenter et al., 2017), BUGS (Lunn et al.,
2009), or JAGS (Plummer & others, 2003), are rooted in the statistics community. MUQ
is particularly useful when the target distribution depends on complicated physical models
that are difficult to implement and computationally expensive. MUQ employs a semi-intrusive
“gray-box” approach (see Figure Figure 1) that enables efficient gradient calculations, through
techniques like the adjoint methods used in PDE constrained optimization, but does not
rely on automatic differentiation and does not place any restrictions on how the model is
implemented (language, solver, etc…). Other sampling packages, such as PyMC3 (Salvatier
et al., 2016), Stan (Carpenter et al., 2017), and tensorflow-probability (Lao et al., 2020), have
adopted various probabilistic programming approaches that are more intrusive than MUQ’s
gray-box approach. Although such tools are useful, they make it more difficult for users to
expose efficient gradient evaluation techniques for problems that rely on PDE solvers or other
complex forward models. MUQ also has a variety of algorithms (e.g., Cotter et al. (2013);
Cui et al. (2016)) for tackling discretizations of infinite-dimensional Bayesian inverse problems
and several other novel MCMC implementations, including multi-level Dodwell et al. (2019)
and multi-index MCMC, local approximation algorithms Davis et al. (2021), and adaptive
transport map MCMC (Parno & Marzouk, 2018).

Parno et al., (2021). MUQ: The MIT Uncertainty Quantification Library. Journal of Open Source Software, 6(68), 3076. https://doi.org/10.
21105/joss.03076

2

https://doi.org/10.21105/joss.03076
https://doi.org/10.21105/joss.03076


Acknowledgements

We are grateful for the many users and developers in the MUQ community. In particular, we
would like to acknowledge software contributions from Alexandra Datz, Arnold Song, Brendan
West, Devin O’Connor, Taylor Hodgdon, Patrick Conrad, Josephine Westermann, Ki-Tae Kim,
Max Liu, and Cassie Lumbrazo. We would also like to acknowledge financial and technical
support from Youssef Marzouk, Matthew Farthing, Peter Bastian, and Robert Scheichl.
This material is based upon work supported by the National Science Foundation under Grant
No. ACI-1550487.
This material is based upon work supported by the US Department of Energy, Office of
Advanced Scientific Computing Research, SciDAC (Scientific Discovery through Advanced
Computing) program under awards DE-SC0007099 and DE-SC0021226, for the QUEST and
FASTMath SciDAC Institutes.

References

Blanco, J. L., & Rai, P. K. (2014). Nanoflann: A C++ header-only fork of FLANN, a library
for nearest neighbor (NN) with KD-trees. https://github.com/jlblancoc/nanoflann.

Boost. (2015). Boost C++ Libraries. http://www.boost.org/.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01

Carpenter, B., Hoffman, M. D., Brubaker, M., Lee, D., Li, P., & Betancourt, M. (2015). The
Stan Math library: Reverse-mode automatic differentiation in C++. https://arxiv.org/
abs/1509.07164

Conrad, P. R., Davis, A. D., Marzouk, Y. M., Pillai, N. S., & Smith, A. (2018). Parallel
local approximation MCMC for expensive models. SIAM/ASA Journal on Uncertainty
Quantification, 6(1), 339–373. https://doi.org/10.1137/16M1084080

Conrad, P. R., & Marzouk, Y. M. (2013). Adaptive Smolyak pseudospectral approximations.
SIAM Journal on Scientific Computing, 35(6), A2643–A2670. https://doi.org/10.1137/
120890715

Cotter, S. L., Roberts, G. O., Stuart, A. M., & White, D. (2013). MCMC methods for
functions: Modifying old algorithms to make them faster. Statistical Science, 424–446.
https://doi.org/10.1214/13-STS421

Cui, T., Law, K. J., & Marzouk, Y. M. (2016). Dimension-independent likelihood-informed
MCMC. Journal of Computational Physics, 304, 109–137. https://doi.org/10.1016/j.jcp.
2015.10.008

Davis, A. D., Marzouk, Y., Smith, A., & Pillai, N. (2021). Rate-optimal refinement strategies
for local approximation MCMC. https://arxiv.org/abs/2006.00032

Detommaso, G., Cui, T., Spantini, A., Marzouk, Y., & Scheichl, R. (2018). A Stein variational
Newton method. https://arxiv.org/abs/1806.03085

Dodwell, T., Ketelsen, C., Scheichl, R., & Teckentrup, A. (2019). Multilevel Markov chain
Monte Carlo. SIAM Review, 61, 509–545. https://doi.org/10.1137/19M126966X

Dodwell, T., Ketelsen, C., Scheichl, R., & Teckentrup, A. (2015). A hierarchical multilevel
Markov chain Monte Carlo algorithm with applications to uncertainty quantification in

Parno et al., (2021). MUQ: The MIT Uncertainty Quantification Library. Journal of Open Source Software, 6(68), 3076. https://doi.org/10.
21105/joss.03076

3

https://github.com/jlblancoc/nanoflann
http://www.boost.org/
https://doi.org/10.18637/jss.v076.i01
https://arxiv.org/abs/1509.07164
https://arxiv.org/abs/1509.07164
https://doi.org/10.1137/16M1084080
https://doi.org/10.1137/120890715
https://doi.org/10.1137/120890715
https://doi.org/10.1214/13-STS421
https://doi.org/10.1016/j.jcp.2015.10.008
https://doi.org/10.1016/j.jcp.2015.10.008
https://arxiv.org/abs/2006.00032
https://arxiv.org/abs/1806.03085
https://doi.org/10.1137/19M126966X
https://doi.org/10.21105/joss.03076
https://doi.org/10.21105/joss.03076


subsurface flow. SIAM ASA Journal on Uncertainty Quantification, 3, 34 S. https://doi.
org/10.1137/130915005

Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3),
607–617. https://doi.org/10.1287/opre.1070.0496

Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. http://eigen.tuxfamily.org.
Han, J., & Liu, Q. (2018). Stein variational gradient descent without gradient. In J. Dy &

A. Krause (Eds.), Proceedings of the 35th international conference on machine learning
(Vol. 80, pp. 1900–1908). PMLR. https://proceedings.mlr.press/v80/han18b.html

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
& Woodward, C. S. (2005). SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3), 363–396.
https://doi.org/10.1145/1089014.1089020

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – seamless operability between
C++11 and Python. https://github.com/pybind/pybind11.

Johnson, S. (2007). The NLopt nonlinear-optimization package. http://github.com/
stevengj/nlopt.

Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464.
https://doi.org/10.1111/1467-9868.00294

Lao, J., Suter, C., Langmore, I., Chimisov, C., Saxena, A., Sountsov, P., Moore, D., Saurous,
R. A., Hoffman, M. D., & Dillon, J. V. (2020). Tfp.mcmc: Modern Markov chain Monte
Carlo tools built for modern hardware. https://arxiv.org/abs/2002.01184

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution,
critique and future directions. Statistics in Medicine, 28(25), 3049–3067. https://doi.
org/10.1002/sim.3680

Parno, M. D., & Marzouk, Y. M. (2018). Transport map accelerated Markov chain Monte
Carlo. SIAM/ASA Journal on Uncertainty Quantification, 6(2), 645–682. https://doi.
org/10.1137/17M1134640

Plummer, M., & others. (2003). JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed
Statistical Computing, 124, 1–10. https://www.r-project.org/conferences/DSC-2003/
Proceedings/

Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. (2016). Probabilistic programming in Python
using PyMC3. PeerJ Computer Science, 2, e55. https://doi.org/10.7717/peerj-cs.55

Sargsyan, K., Huan, X., & Najm, H. N. (2019). Embedded model error representation for
Bayesian model calibration. International Journal for Uncertainty Quantification, 9(4).
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019027384

Seelinger, L., Reinarz, A., Rannabauer, L., Bader, M., Bastian, P., & Scheichl, R. (2021). High
performance uncertainty quantification with parallelized multilevel Markov chain Monte
Carlo. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. https://doi.org/10.1145/3458817.3476150

Parno et al., (2021). MUQ: The MIT Uncertainty Quantification Library. Journal of Open Source Software, 6(68), 3076. https://doi.org/10.
21105/joss.03076

4

https://doi.org/10.1137/130915005
https://doi.org/10.1137/130915005
https://doi.org/10.1287/opre.1070.0496
http://eigen.tuxfamily.org
https://proceedings.mlr.press/v80/han18b.html
https://doi.org/10.1145/1089014.1089020
https://github.com/pybind/pybind11
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.1111/1467-9868.00294
https://arxiv.org/abs/2002.01184
https://doi.org/10.1002/sim.3680
https://doi.org/10.1002/sim.3680
https://doi.org/10.1137/17M1134640
https://doi.org/10.1137/17M1134640
https://www.r-project.org/conferences/DSC-2003/Proceedings/
https://www.r-project.org/conferences/DSC-2003/Proceedings/
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019027384
https://doi.org/10.1145/3458817.3476150
https://doi.org/10.21105/joss.03076
https://doi.org/10.21105/joss.03076

	Summary
	Statement of need
	Acknowledgements
	References

