
Metatheory.jl: Fast and Elegant Algebraic Computation
in Julia with Extensible Equality Saturation
Alessandro Cheli1

1 University of Pisa, Pisa, Italy
DOI: 10.21105/joss.03078

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @mwillsey
• @jpfairbanks
• @philzook58

Submitted: 12 February 2021
Published: 31 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of Need

The Julia programming language is a fresh approach to technical computing (Bezanson et al.,
2017), disrupting the popular conviction that a programming language cannot be high-level,
easy to learn, and performant at the same time. One of the most practical features of Julia is
the excellent metaprogramming and macro system, allowing for homoiconicity: programmatic
generation and manipulation of expressions as first-class values, a well-known paradigm found
in LISP dialects such as Scheme.
Metatheory.jl is a general-purpose metaprogramming and algebraic computation library for
the Julia programming language, designed to take advantage of its powerful reflection capa-
bilities to bridge the gap between symbolic mathematics, abstract interpretation, equational
reasoning, optimization, composable compiler transforms, and advanced homoiconic pattern-
matching features. Intuitively, Metatheory.jl transforms Julia expressions into other Julia
expressions at both compile time and run time. This allows users to perform customized
and composable compiler optimizations that are specifically tailored to single, arbitrary Julia
packages. The library provides a simple, algebraically composable interface to help scientists
to implement and reason about all kinds of formal systems, by defining concise rewriting rules
as syntactically-valid Julia code. The primary benefit of using Metatheory.jl is the algebraic
nature of the specification of the rewriting system. Composable blocks of rewrite rules bear a
strong resemblance to algebraic structures encountered in everyday scientific literature.

Summary

Metatheory.jl offers a concise macro system to define theories: composable blocks of rewriting
rules that can be executed through two, highly composable, rewriting backends. The first is
based on standard rewriting, built on top of the pattern matcher developed in Zhao & Carlsson
(2020). This approach, however, suffers from the usual problems of rewriting systems. For
example, even trivial equational rules such as commutativity may lead to non-terminating
systems and thus need to be adjusted by some sort of structuring or rewriting order, which is
known to require extensive user reasoning.
The other back-end for Metatheory.jl, the core of our contribution, is designed so that it does
not require the user to reason about rewriting order. To do so it relies on equality saturation
on e-graphs, the state-of-the-art technique adapted from the egg Rust library (Willsey et al.,
2021).
E-graphs can compactly represent many equivalent expressions and programs. Provided with
a theory of rewriting rules, defined in pure Julia, the equality saturation process iteratively
executes an e-graph-specific pattern matcher and inserts the matched substitutions. Since

Cheli, A., (2021). Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation. Journal of Open Source
Software, 6(59), 3078. https://doi.org/10.21105/joss.03078

1

https://doi.org/10.21105/joss.03078
https://github.com/openjournals/joss-reviews/issues/3078
https://github.com/0x0f0f0f/Metatheory.jl
https://doi.org/10.5281/zenodo.4646136
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/mwillsey
https://github.com/jpfairbanks
https://github.com/philzook58
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03078

e-graphs can contain loops, infinite derivations can be represented compactly and it is not
required that the described rewrite system be terminating or confluent.
The saturation process relies on the definition of e-graphs to include rebuilding, i.e. the au-
tomatic process of propagation and maintenance of congruence closures. One of the core
contributions of Willsey et al. (2021) is a delayed e-graph rebuilding process that is executed
at the end of each saturation step, whereas previous definitions of e-graphs in the literature
included rebuilding after every rewrite operation. Provided with equality saturation, users can
efficiently derive (and analyze) all possible equivalent expressions contained in an e-graph.
The saturation process can be required to stop prematurely as soon as chosen properties
about the e-graph and its expressions are proved. This latter back-end based on e-graphs
is suitable for partial evaluators, symbolic mathematics, static analysis, theorem proving and
superoptimizers.

Figure 1: These four e-graphs represent the process of equality saturation, adding many equivalent
ways to write a ∗ (2 ∗ 3)/6 after each iteration.

The original egg library (Willsey et al., 2021) is the first implementation of generic and
extensible e-graphs (Nelson & Oppen, 1980); the contributions of egg include novel amor-
tized algorithms for fast and efficient equivalence saturation and analysis. Differently from
the original Rust implementation of egg, which handles expressions defined as Rust strings
and data structures, our system directly manipulates homoiconic Julia expressions, and can
therefore fully leverage the Julia subtyping mechanism (Zappa Nardelli et al., 2018), allowing
programmers to build expressions containing not only symbols but all kinds of Julia values.
This permits rewriting and analyses to be efficiently based on runtime data contained in ex-
pressions. Most importantly, users can – and are encouraged to – include type assertions in
the left-hand side of rewriting rules in theories.
One of the project goals of Metatheory.jl, beyond being easy to use and composable, is to
be fast and efficient. Both the first-class pattern matching system and the generation of
e-graph analyses from theories rely on RuntimeGeneratedFunctions.jl (Rackauckas & Foster,
2021), generating callable functions at runtime that efficiently bypass Julia’s world age problem
(explained and formalized in Belyakova et al. (2020)) with the full performance of a standard
Julia anonymous function.

Analyses and Extraction

With Metatheory.jl, modeling analyses and conditional/dynamic rewrites are straightforward.
It is possible to check conditions on runtime values or to read and write from external data
structures during rewriting. The analysis mechanism described in egg (Willsey et al., 2021)
and re-implemented in our contribution lets users define ways to compute additional analysis
metadata from an arbitrary semi-lattice domain, such as costs of nodes or logical statements
attached to terms. Other than for inspection, analysis data can be used to modify expressions
in the e-graph both during rewriting steps and after e-graph saturation.

Cheli, A., (2021). Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation. Journal of Open Source
Software, 6(59), 3078. https://doi.org/10.21105/joss.03078

2

https://doi.org/10.21105/joss.03078

Therefore using the equality saturation (e-graph) backend, extraction can be performed as
an on-the-fly e-graph analysis or after saturation. Users can define their own cost function,
or choose between a variety of predefined cost functions for automatically extracting the
best-fitting expressions from an equivalence class represented in an e-graph.

Example Usage

In this example, we build rewrite systems, called theories in Metatheory.jl, for simplifying
expressions in the usual commutative monoid of multiplication and the commutative group
of addition, and we compose the theories together with a constant folding theory. The
pattern matcher for the e-graphs backend allows us to use the existing Julia type hierarchy for
integers and floating-point numbers with a high level of abstraction. As a contribution over
the original egg (Willsey et al., 2021) implementation, left-hand sides of rules in Metatheory.jl
can contain type assertions on pattern variables, to give rules that depend on consistent type
hierarchies and to seamlessly access literal Julia values in the right-hand side of dynamic rules.
We finally introduce two simple rules for simplifying fractions, that for the sake of simplicity, do
not check any additional analysis data. Figure 1 contains a friendly visualization of a consistent
fragment of the equality saturation process in this example. You can see how loops evidently
appear in the definition of the rewriting rules. While the classic rewriting backend would loop
indefinitely or stop early when repeatedly matching these rules, the e-graph backend natively
supports this level of abstraction and allows the programmer to completely forget about
the ordering and looping of rules. Efficient scheduling heuristics are applied automatically
to prevent instantaneous combinatorial explosion of the e-graph, thus preventing substantial
slowdown of the equality saturation process.

using Metatheory
using Metatheory.EGraphs

comm_monoid = @theory begin
commutativity
a * b => b * a
identity
a * 1 => a
associativity
a * (b * c) => (a * b) * c
(a * b) * c => a * (b * c)

end;

comm_group = @theory begin
commutativity
a + b => b + a
identity
a + 0 => a
associativity
a + (b + c) => (a + b) + c
(a + b) + c => a + (b + c)
inverse
a + (-a) => 0

end;

dynamic rules are defined with the `|>` operator
folder = @theory begin
a::Real + b::Real |> a+b

Cheli, A., (2021). Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation. Journal of Open Source
Software, 6(59), 3078. https://doi.org/10.21105/joss.03078

3

https://doi.org/10.21105/joss.03078

a::Real * b::Real |> a*b
end;

div_sim = @theory begin
(a * b) / c => a * (b / c)
a::Real / a::Real |> (a != 0 ? 1 : error("division by 0"))

end;

t = union(comm_monoid, comm_group, folder, div_sim) ;

g = EGraph(:(a * (2*3) / 6)) ;
saturate!(g, t) ;
ex = extract!(g, astsize)
:a

Conclusion

Many applications of equality saturation to advanced optimization tasks have been recently
published. Herbie (Panchekha et al., 2015) is a tool for automatically improving the pre-
cision of floating point expressions, which recently switched to egg as the core rewriting
backend. However, Herbie requires interoperation and conversion of expressions between dif-
ferent languages and libraries. In Yang et al. (2021), the authors used egg to superoptimize
tensor signal flow graphs describing neural networks. Implementing similar case studies in
pure Julia would make valid research contributions on their own. We are confident that a
well-integrated and homoiconic equality saturation engine in pure Julia will permit exploration
of many new metaprogramming applications, and allow them to be implemented in an ele-
gant, performant and concise way. Code for Metatheory.jl is available in Cheli (2021), or at
https://github.com/0x0f0f0f/Metatheory.jl.

Acknowledgements

We acknowledge Max Willsey and contributors for their work on the original egg library
(Willsey et al., 2021), Christopher Rackauckas and Christopher Foster for their efforts in
developing RuntimeGeneratedFunctions (Rackauckas & Foster, 2021), Taine Zhao for devel-
oping MLStyle (Zhao, 2021) and MatchCore (Zhao & Carlsson, 2020), and Philip Zucker for
his original idea of implementing E-Graphs in Julia (Zucker, 2020b, 2020a) and support during
the development of the project. Special thanks to Filippo Bonchi for a friendly review of a
preliminary version of this article.

References

Belyakova, J., Chung, B., Gelinas, J., Nash, J., Tate, R., & Vitek, J. (2020). World age in
Julia: Optimizing method dispatch in the presence of eval. Proc. ACM Program. Lang.,
4(OOPSLA). https://doi.org/10.1145/3428275

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Cheli, A. (2021). Metatheory.jl. In GitHub repository. GitHub. https://github.com/0x0f0f0f/
Metatheory.jl

Cheli, A., (2021). Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation. Journal of Open Source
Software, 6(59), 3078. https://doi.org/10.21105/joss.03078

4

https://github.com/0x0f0f0f/Metatheory.jl
https://doi.org/10.1145/3428275
https://doi.org/10.1137/141000671
https://github.com/0x0f0f0f/Metatheory.jl
https://github.com/0x0f0f0f/Metatheory.jl
https://doi.org/10.21105/joss.03078

Nelson, G., & Oppen, D. C. (1980). Fast decision procedures based on congruence closure.
J. ACM, 27(2), 356–364. https://doi.org/10.1145/322186.322198

Panchekha, P., Sanchez-Stern, A., Wilcox, J. R., & Tatlock, Z. (2015). Automatically im-
proving accuracy for floating point expressions. SIGPLAN Not., 50(6), 1–11. https:
//doi.org/10.1145/2813885.2737959

Rackauckas, C., & Foster, C. (2021). RuntimeGeneratedFunctions.jl: Functions generated at
runtime without world-age issues. In GitHub repository. GitHub. https://github.com/
SciML/RuntimeGeneratedFunctions.jl

Willsey, M., Nandi, C., Wang, Y. R., Flatt, O., Tatlock, Z., & Panchekha, P. (2021). Egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang., 5(POPL). https:
//doi.org/10.1145/3434304

Yang, Y., Phothilimtha, P. M., Wang, Y. R., Willsey, M., Roy, S., & Pienaar, J. (2021).
Equality saturation for tensor graph superoptimization. arXiv Preprint arXiv:2101.01332.
https://arxiv.org/pdf/2101.01332.pdf

Zappa Nardelli, F., Belyakova, J., Pelenitsyn, A., Chung, B., Bezanson, J., & Vitek, J. (2018).
Julia subtyping: A rational reconstruction. Proc. ACM Program. Lang., 2(OOPSLA).
https://doi.org/10.1145/3276483

Zhao, T. (2021). MLStyle.jl: Fast, consistent and extensible functional programming infras-
tructures. In GitHub repository. GitHub. https://github.com/thautwarm/MLStyle.jl

Zhao, T., & Carlsson, K. (2020). MatchCore.jl: A minimal implementation of optimized
pattern matching. In GitHub repository. GitHub. https://github.com/thautwarm/
MatchCore.jl

Zucker, P. (2020a). E-graph pattern matching Part II. https://www.philipzucker.com/
egraph-2/

Zucker, P. (2020b). E-graphs in Julia Part I. https://www.philipzucker.com/egraph-1/

Cheli, A., (2021). Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation. Journal of Open Source
Software, 6(59), 3078. https://doi.org/10.21105/joss.03078

5

https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://github.com/SciML/RuntimeGeneratedFunctions.jl
https://github.com/SciML/RuntimeGeneratedFunctions.jl
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://arxiv.org/pdf/2101.01332.pdf
https://doi.org/10.1145/3276483
https://github.com/thautwarm/MLStyle.jl
https://github.com/thautwarm/MatchCore.jl
https://github.com/thautwarm/MatchCore.jl
https://www.philipzucker.com/egraph-2/
https://www.philipzucker.com/egraph-2/
https://www.philipzucker.com/egraph-1/
https://doi.org/10.21105/joss.03078

	Statement of Need
	Summary
	Analyses and Extraction

	Example Usage
	Conclusion
	Acknowledgements
	References

