
eigentools: A Python package for studying differential
eigenvalue problems with an emphasis on robustness
Jeffrey S. Oishi∗1, Keaton J. Burns2, S. E. Clark3, Evan H. Anders4,
Benjamin P. Brown5, Geoffrey M. Vasil6, and Daniel Lecoanet4, 7

1 Department of Physics and Astronomy, Bates College 2 Department of Mathematics, MIT 3
School of Natural Sciences, Institute for Advanced Study 4 CIERA, Northwestern University 5
Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder 6 School of
Mathematics and Statistics, University of Sydney 7 Department of Engineering Sciences and
Applied Mathematics, Northwestern University

DOI: 10.21105/joss.03079

Software
• Review
• Repository
• Archive

Editor: David P. Sanders
Reviewers:

• @ketch
• @caropen

Submitted: 14 January 2021
Published: 23 June 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary and Statement of need

Linear stability analysis of partial differential equations (PDEs) is a fundamental tool in chaotic
dynamics, fluid dynamics, biophysics, and many other scientific disciplines. These analyses
require solving eigenvalue problems. However, studying these eigenvalues is not without sig-
nificant peril: discretized PDEs are poorly conditioned and many of the numerical eigenvalues
reported by standard solvers are unreliable. Additionally, it is far from trivial to start with a
set of PDEs and construct a matrix discretization in the first place. In order to solve these
problems, we present eigentools, a Python package that extends the eigenvalue problem
(EVP) capabilities of the Dedalus Project (Burns et al., 2020) to provide a complete analysis
toolkit for EVPs.
eigentools provides a convenient, parallelized interface for both modal and non-modal
stability analyses for nearly arbitrary systems of PDEs. It provides a toolkit that makes it very
easy to take a model, find robust eigenvalues and eigenmodes, and find critical parameter
values for stability. The only thing a user needs to do is find a state to linearize about.
One constructs a Dedalus EigenvalueProblem object for the PDE linearized about the
chosen background, and passes that to eigentools. eigentools provides robust spurious
eigenvalue rejection (Boyd, 2001), spectrum and eigenmode visualization, ε−pseudospectra,
and the ability to project a given eigenmode onto an 2- or 3-dimensional domain and save it
as a Dedalus-formatted HDF5 file to use as an initial condition for a non-linear simulation of
the same system.

Robust Eigenvalues and Finding Critical Parameters

The core eigentools class, Eigenproblem, provides a simple interface to accurately solve
a Dedalus eigenvalue problem using sparse or dense methods. A common use of eigenvalue
problems is stability analysis, in which one characterizes the exponential growth rate γ of a
mode via (typically) the temporal part of the eigenvalue, eγt with γ ∈ R. When γ > 0, the
mode is unstable. Eigenproblem allows the user to choose how this “growth” is defined
via custom functions of the eigenvalues returned by the solver. This permits instability to
correspond to positive real parts of the eigenvalue (e.g. eσt, σ = γ + iω and γ, ω ∈ R),
negative imaginary parts of the eigenvalue (e.g. ei(kx−ωt), ω = ωr + iωi, ωr, ωi ∈ R), or
any other choice. Because every eigenvalue has a corresponding growth rate, Eigenproblem

∗Corresponding Author

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

1

https://doi.org/10.21105/joss.03079
https://github.com/openjournals/joss-reviews/issues/3079
https://github.com/DedalusProject/eigentools
https://doi.org/10.5281/zenodo.4968601
http://sistemas.fciencias.unam.mx/~dsanders
https://github.com/ketch
https://github.com/caropen
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03079

returns an overall growth rate defined as the robust eigenvalue with the highest growth rate.
Eigenproblem also has simple tools to plot all components of eigenmodes corresponding to a
selected eigenvalue. In order to find robust eigenvalues, eigentools performs mode rejection
by solving the same problem twice, once at a user specifiable multiple (1.5 by default) of
the original resolution. In order to ascertain which modes are good, we calculate a figure
of merit called the inverse drift ratio one of two ways (for details, see Chapter 7 of Boyd,
2001). For simple problems with only one mode family, one can use the ordinal method in
which the eigenvalues are compared in sorted order. However, many important problems have
multiple wave families. By increasing the resolution, the number of resolved modes for each
family increases; because of this, one must compare the drift ratios of the nearest eigenvalues
between the two resolutions. The right panel of Figure 1 shows both ordinal and nearest drift
ratios; by the ordinal criterion, all eigenvalues would be rejected, despite the fact that many
eigenvalues are robust. This shows that for this problem, one must use the nearest method.

Figure 1: Magnetorotational instability. From left to right: growth rates in the Rm−Q plane; black
line and circles show zero-growth contour. The MRI spectrum at the critical parameters. Inverse drift
ratios for modes shown in the spectrum. Those below 106 are rejected according to nearest (blue)
and ordinal (orange) criteria. For this problem, the nearest criterion must be used.

One of the original motivations for eigentools was to quickly and easily find critical pa-
rameters for eigenvalue stability problems. Critical parameters are those at which the fastest
growing mode has zero growth rate. In order to do so, eigentools provides an object
CriticalFinder, which allows users to specify an Eigenproblem and a 2-dimensional tu-
ple of parameters. The user then provides a grid of points for those two parameters, and
CriticalFinder finds the maximum growth rate for the EVP at each point in the grid,
exploiting MPI parallelism on multiprocessor systems. It then interpolates to find the zero
crossings of one parameter, and finally minimizes over the remaining parameter to find ap-
proximate critical values. CriticalFinder also provides simple visualization tools, root
polishing algorithms to further refine the critical values, and the ability to save and load the
grid of eigenvalues.
Figure 1 demonstrates three core features of eigentools: the ability to find critical param-
eters, the ability to use sparse and dense eigenvalue solvers, and the ability to reject spurious
eigenvalues. In the left panel, the growth rate of the magnetorotational instability (defined as
the positive real part of the eigenvalue σ) is plotted on a 20× 20 grid of magnetic Reynolds
number Rm and wavenumber Q, finding the critical values Rmc = 4.88, Q = 0.747 (Clark
& Oishi, 2017b); in Figure 1, we used 4 cores each performing 100 sparse eigenvalue solves
finding the 15 modes with σ closest to zero. The middle panel shows the spectrum at the
critical parameters; this was solved using a dense eigenvalue solver to find all modes. The
unstable mode is a rotationally modified Alfvén wave highlighted in red. Finally, the rightmost
panel shows a plot of the inverse drift ratio 1/δ for both ordinal and nearest comparisons.

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

2

https://doi.org/10.21105/joss.03079

Output and creation of initial conditions

eigentools can output eigenmodes in the Dedalus HDF5 data format so they can easily
be used as initial conditions for non-linear simulations. Figure 2 highlights this capability.
We solve an EVP at Ra = 106 for Rayleigh-Benard convection between two no-slip plates
using eigentools at a resolution of nz = 32, and select the most unstable mode. We then
project that mode on a 2-D domain, write it to disk, and load the data into a Dedalus initial
value problem (IVP) solver using the full, non-linear equations for Rayleigh-Benard convection.
Using Dedalus’s ability to change parameters and resolutions on the fly, we then run IVP with
a resolution of (512, 64) until it reaches a non-linear steady state.

Figure 2: Rayleigh-Benard convection. From left to right: buoyancy (colormap) and velocities
(arrows) for the most unstable eigenmode at Ra = 106, buoyancy and velocities for the non-linear
steady state for that eigenmode after evolution via an initial value problem in Dedalus, time evolution
of RMS buoyancy.

The IVP in Figure 2 was run in parallel on 32 cores. In the right panel of Figure 2, we see
excellent agreement between the growth rate from the non-linear IVP and the initial eigenvalue
until non-linearity begins to become important around t ≈ 0.01.

Pseudospectra

The eigentools package can also solve for the ε–pseudospectra (Trefethen & Embree, 2005)
of generalized eigenvalue problems of the form

Lx = λMx (1)

using the recent algorithm given by Embree & Keeler (2017). To our knowledge, this is the first
open-source system for computing ε−pseudospectra for arbitrary generalized EVPs, including
those with singular M matrices. Such M arise quite commonly in the solution of temporally
differential-algebraic equations, which occur any time there are algebraic equations in the
system such as linear constraints (e.g. ∇·u = 0) or boundary conditions. The pseudospectrum
shows the sensitivity of the eigenvalue λ to a parameter ε for bounded perturbations in the
underlying operators

L → L+ L′, M → M +M ′, where ||L′||, ||M ′|| < ε. (2)

The notion of pseudospectra relies on a particular choice of operator norm; in fluid dynamics,
this is often the energy inner product. eigentools allow the user to implement any norm
useful for their particular problem, provided it is induced by an inner product on the underlying
vector space V :

||L|| = sup
x∈V

√
⟨Lx,Lx⟩
⟨x, x⟩

. (3)

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

3

https://doi.org/10.21105/joss.03079

The pseudospectrum identifies the robust parts of the spectrum. Pseudospectra have numer-
ous applications, including non-modal stability analysis in fluid dynamics (Schmid & Henning-
son, 2012), locating topological states (Loring, 2015), and helping to understand the unusual
properties of PT –symmetric quantum mechanics (Krejčiřík et al., 2015).

Figure 3: Spectrum, pseudospectrum, and four representative eigenmodes for the Orr-Sommerfeld
problem, expressed in primitive variables (u, v). The eigenmodes correspond to the eigenvalues high-
lighted in orange in the middle panel; eigenvalue rejection ensures the oscillations in the modes are
well-resolved. Pseudospectra contours are labeled by n, representing 10n.

Figure 3 shows an example pseudospectrum, its corresponding spectrum, and four represen-
tative eigenvectors for the classic Orr-Sommerfeld problem in hydrodynamic stability theory
(Reddy et al., 1993; Trefethen et al., 1993). As a twist on the standard problem, we demon-
strate Dedalus and eigentools ability to solve the problem using the standard Navier-Stokes
equations linearized about a background velocity, rather than in the traditional, single fourth-
order equation for wall-normal velocity. This is not possible without using the generalized
eigenvalue pseudospectra algorithm implemented above. Note that for the four eigenvectors,
we plot u and w, the stream wise and wall-normal directions, respectively, rather than w and
η, the vorticity as would be the case in the reduced Orr-Sommerfeld form. The solid and
dashed lines represent the real and imaginary parts of the eigenvectors, respectively.

Example

Here we present a script that computes the spectra and pseudospectra for the Orr-Sommerfeld
problem, producing a simplified version of the center plot in Figure 3. The first block of code
sets up the Navier-Stokes equations in Dedalus, making use of its expressive substitution
mechanism.

import matplotlib.pyplot as plt
from eigentools import Eigenproblem
import dedalus.public as de
import numpy as np

define Navier-Stokes equations in Dedalus
z = de.Chebyshev('z', 128)
d = de.Domain([z])
os = de.EVP(d,['u','w','uz','wz', 'p'],'c')

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

4

https://doi.org/10.21105/joss.03079

os.parameters['alpha'] = 1.
os.parameters['Re'] = 10000
os.substitutions['umean'] = '1 - z**2'
os.substitutions['umeanz'] = '-2*z'
os.substitutions['dx(A)'] = '1j*alpha*A'
os.substitutions['dt(A)'] = '-1j*alpha*c*A'
os.substitutions['Lap(A,Az)'] = 'dx(dx(A)) + dz(Az)'
os.add_equation('dt(u) + umean*dx(u) + w*umeanz + dx(p) - Lap(u, uz)/Re = 0')
os.add_equation('dt(w) + umean*dx(w) + dz(p) - Lap(w, wz)/Re = 0')
os.add_equation('dx(u) + wz = 0')
os.add_equation('uz - dz(u) = 0')
os.add_equation('wz - dz(w) = 0')
os.add_bc('left(w) = 0')
os.add_bc('right(w) = 0')
os.add_bc('left(u) = 0')
os.add_bc('right(u) = 0')

os_EP = Eigenproblem(os) # the main eigentools interface

define the energy inner product
def energy_ip(Q1, Q2):

u1, w1 = Q1['u'], Q1['w']
u2, w2 = Q2['u'], Q2['w']

field = (np.conj(u1)*u2 + np.conj(w1)*w2).evaluate().integrate()
return field['g'][0]

Calculate pseudospectrum
k = 100 # size of invariant subspace
psize = 100 # number of points in real, imaginary points
real_points = np.linspace(0,1, psize)
imag_points = np.linspace(-1,0.1, psize)
os_EP.calc_ps(k, (real_points, imag_points), inner_product=energy_ip)

plot
P_CS = plt.contour(os_EP.ps_real,os_EP.ps_imag, np.log10(os_EP.pseudospectrum),

levels=np.arange(-8,0),linestyles='solid')
plt.scatter(os_EP.evalues.real, os_EP.evalues.imag,color='blue',marker='x')
plt.xlim(0,1); plt.ylim(-1,0.1)
plt.xlabel(r"c_r"); plt.ylabel(r"c_i")
plt.tight_layout(); plt.savefig("OS_pseudospectra.png", dpi=300)

Related Work

There are a few other packages dedicated to the automatic construction of eigenvalue prob-
lems, including Chebfun, which can also produce pseudospectra. Chebfun, while itself released
under the standard 3-Clause BSD license, is written in the proprietary MATLAB language. For
computing spectra and pseudospectra for existing matrices, the venerable EigTool package is
another open-source option, also written in MATLAB. It does not feature parallelism nor the
ability to construct matrices from PDEs. EigTool has also been ported to the open-source
Julia language in the Pseudospectra.jl package.
eigentools has been used in several papers, including Clark & Oishi (2017b); Clark & Oishi

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

5

https://www.chebfun.org/
https://github.com/eigtool/eigtool
https://github.com/RalphAS/Pseudospectra.jl
https://doi.org/10.21105/joss.03079

(2017a); Anders & Brown (2017); Anders et al. (2019); Oishi et al. (2020); Burns et al.
(2020); and Lin (2021).

Acknowledgments

Eigentools was developed with support from the Research Corporation under the Scialog
Collaborative Award (TDA) ID# 24231 and from NASA under LWS Grant No. NNX16AC92G
and SSW Grant No. 80NSSC19K0026.

References

Anders, E. H., & Brown, B. P. (2017). Convective heat transport in stratified atmospheres at
low and high Mach number. Physical Review Fluids, 2(8), 083501. https://doi.org/10.
1103/PhysRevFluids.2.083501

Anders, E. H., Manduca, C. M., Brown, B. P., Oishi, J. S., & Vasil, G. M. (2019). Predicting
the Rossby Number in Convective Experiments. Astrophysical Journal, 872(2), 138. https:
//doi.org/10.3847/1538-4357/aaff61

Boyd, J. P. (2001). Chebyshev and Fourier Spectral Methods: Second revised edition. Dover
Publications. ISBN: 9780486411835

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A
flexible framework for numerical simulations with spectral methods. Phys. Rev. Research,
2, 023068. https://doi.org/10.1103/PhysRevResearch.2.023068

Clark, S. E., & Oishi, J. S. (2017a). The Weakly Nonlinear Magnetorotational Instability
in a Global, Cylindrical Taylor-Couette Flow. Astrophysical Journal, 841(1), 2. https:
//doi.org/10.3847/1538-4357/aa6ff6

Clark, S. E., & Oishi, J. S. (2017b). The Weakly Nonlinear Magnetorotational Instability in a
Local Geometry. Astrophysical Journal, 841(1), 1. https://doi.org/10.3847/1538-4357/
aa6ff1

Embree, M., & Keeler, B. (2017). Pseudospectra of matrix pencils for transient analysis of
differential-algebraic equations. SIAM Journal on Matrix Analysis and Applications, 38(3),
1028–1054. https://doi.org/10.1137/15M1055012

Krejčiřík, D., Siegl, P., Tater, M., & Viola, J. (2015). Pseudospectra in non-hermitian quan-
tum mechanics. Journal of Mathematical Physics, 56(10), 103513. https://doi.org/10.
1063/1.4934378

Lin, M.-K. (2021). Stratified and Vertically Shearing Streaming Instabilities in Protoplanetary
Disks. Astrophysical Journal, 907(2), 64. https://doi.org/10.3847/1538-4357/abcd9b

Loring, T. A. (2015). K-theory and pseudospectra for topological insulators. Annals of
Physics, 356, 383–416. https://doi.org/10.1016/j.aop.2015.02.031

Oishi, J. S., Vasil, G. M., Baxter, M., Swan, A., Burns, K. J., Lecoanet, D., & Brown, B.
P. (2020). The magnetorotational instability prefers three dimensions. Proceedings of the
Royal Society of London Series A, 476(2233), 20190622. https://doi.org/10.1098/rspa.
2019.0622

Reddy, S. C., Schmid, P. J., & Henningson, D. S. (1993). Pseudospectra of the Orr–
Sommerfeld operator. SIAM Journal on Applied Mathematics, 53(1), 15–47. https:
//doi.org/10.1137/0153002

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

6

https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.1103/PhysRevFluids.2.083501
https://doi.org/10.3847/1538-4357/aaff61
https://doi.org/10.3847/1538-4357/aaff61
https://worldcat.org/isbn/9780486411835
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/1538-4357/aa6ff6
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.3847/1538-4357/aa6ff1
https://doi.org/10.1137/15M1055012
https://doi.org/10.1063/1.4934378
https://doi.org/10.1063/1.4934378
https://doi.org/10.3847/1538-4357/abcd9b
https://doi.org/10.1016/j.aop.2015.02.031
https://doi.org/10.1098/rspa.2019.0622
https://doi.org/10.1098/rspa.2019.0622
https://doi.org/10.1137/0153002
https://doi.org/10.1137/0153002
https://doi.org/10.21105/joss.03079

Schmid, P. J., & Henningson, D. S. (2012). Stability and Transition in Shear Flows. Springer
New York. ISBN: 9781461301851

Trefethen, L. N., & Embree, M. (2005). Spectra and Pseudospectra: The behavior of non-
normal matrices and operators. Princeton University Press. ISBN: 9780691119465

Trefethen, L. N., Trefethen, A. E., Reddy, S. C., & Driscoll, T. A. (1993). Hydrodynamic
stability without eigenvalues. Science, 261(5121), 578–584. https://doi.org/10.1126/
science.261.5121.578

Oishi et al., (2021). eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness. Journal of
Open Source Software, 6(62), 3079. https://doi.org/10.21105/joss.03079

7

https://worldcat.org/isbn/9781461301851
https://worldcat.org/isbn/9780691119465
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.21105/joss.03079

	Summary and Statement of need
	Robust Eigenvalues and Finding Critical Parameters
	Output and creation of initial conditions
	Pseudospectra
	Example
	Related Work
	Acknowledgments
	References

