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Figure 1: The coxeter package supports calculating a wide range of properties on shapes in two and
three dimensions. The central bubble in the figure contains a subset the shapes supported by coxeter,
which includes simple polygons in 2D and arbitrary 3D polyhedral meshes. The surrounding bubbles
represent a sampling of what coxeter can do with a shape. From the top-left going clockwise, these
are: determining the inspheres of polytopes (as well as minimal bounding spheres for all shapes);
calculating the distance from the centroid of a shape to its boundary; checking whether a point lies
inside or outside a shape; determining the circumspheres of polytopes (as well as maximal bounded
spheres for all shapes); calculating moments of inertia in 2D and inertia tensors in 3D (including
support for reorienting a shape along its principal axes); and anisotropic form factors for arbitrary
shapes, which are important for scattering calculations.

The coxeter Python package provides tools to represent, generate, and compute properties of
shapes in two and three dimensions. The package emphasizes simplicity and flexibility, using
a common set of abstractions to present a largely uniform interface across various shapes and
allowing easy mutation of almost all of their geometric attributes. The package also serves as
a repository for specific groups of shapes, exposing an easy-to-use API for shape generation
that users can extend to make particular geometric objects collectively accessible.
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Statement of Need

Considerations of shape are becoming increasingly important in materials science as improved
synthetic capabilities have allowed the creation of a wide range of anisotropic particles (Glotzer
& Solomon, 2007). Colloidal science in particular has seen immense growth in this area,
and numerous studies have shown that particle shape is an important handle for controlling
the self-assembly (Damasceno et al., 2012) and packing (Chen et al., 2014) of colloidal
crystals. Precise modeling of these systems requires reproducible methods for generating
shapes and calculating their properties (Allen & Germano, 2006; Anderson et al., 2020). An
important aspect of achieving this reproducibility is making canonical definitions of shapes
used in particular studies readily available to other researchers. Furthermore, since these
shapes may be used in physics-based simulations, any calculations must be robust enough
to handle any numerical issues that may arise across a wide range of different geometries.
Some of the applications of coxeter to date include: the development of equations of state for
polyhedral particles (Irrgang et al., 2017); the calculation of physical properties for dynamical
simulation of anisotropic particles (Ramasubramani et al., 2020); and the orientational ordering
of ellipsoidal colloids in a magnetic field (Kao et al., 2019).

Summary of Features

Computing Geometric and Physical Properties

The central elements in coxeter are the shape classes, which encode the features of particular
types of shapes. In order to enforce a highly uniform API and ensure conceptual clarity, all
shape classes inherit from a small set of abstract base classes that encode specific subsets of
properties: for instance, the standard properties of all shapes in two dimensions are embedded
in the Shape2D class. In addition to standard types of shapes such as ellipsoids or polygons,
coxeter also includes more esoteric shape classes like spheropolyhedra, which are important
for modeling the imperfect rounded polyhedra frequently synthesized at the nano- and micron
scales (Rossi et al., 2015; Zhang et al., 2011). Even simple properties like surface areas are
generally nontrivial to compute for such shapes, but using coxeter spheropolyhedra are no more
difficult to work with than any other 3D shape. Working with convex polygons and polyhedra
using coxeter is greatly simplified via internal use of SciPy’s convex hull calculations (Virtanen
et al., 2020), allowing the user to simply provide a set of vertices while coxeter performs the
appropriate determination of facets and plane equations based on the simplices of the convex
hull.
The shape classes transparently expose many geometric attributes in the form of settable
Python properties, allowing on-the-fly rescaling or transformation of the shape. This aspect
of coxeter is designed to fill a common gap in most computational geometry libraries, which
typically focus on solving more complex problems like finding convex hulls, Voronoi tessel-
lations, and Delaunay triangulations (The CGAL Project, 2020); coxeter aims to provide a
standard implementation for simpler calculations such as surface areas and bounding spheres
for which formulas are generally well-known but often require careful consideration to calculate
robustly and efficiently. These properties range from standard calculations like volumes and
surface areas to less common metrics like mean curvatures and asphericities that are relevant
for computing equations of state for polyhedral particles (Irrgang et al., 2017). The package
also provides various types of bounding and bounded spheres of shapes, which are measures
of the extent of polygons and polyhedra within crystal structures. To simplify interoperability
with other packages in the scientific computing ecosystem, non-scalar properties are generally
provided as NumPy arrays (Harris et al., 2020).
In addition to purely geometric properties, shapes in coxeter also expose various physically
relevant quantities in order to support a wide range of applications for shapes of constant
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density. Some examples of such properties are inertia tensors, which are integral to the
equations of motion for anisotropic bodies, and scattering form factors, which are Fourier
transforms of the shape volume that help characterize structure in condensed matter physics
(Als-Nielsen & McMorrow, 2011). Since physical equations and observables can be highly
sensitive to inputs like inertia tensors, coxeter emphasizes robust methods for their evaluation
(Kallay, 2006). Two dimensional shapes like polygons are embedded in three dimensions
rather than in the plane, so coxeter uses the rowan library (Ramasubramani & Glotzer, 2018)
to rotate them into the plane and then compute various properties to avoid complications and
numerical instabilities that arise from performing integrals over planar lamina embedded in
3D Euclidean space.

Shape Generation

The library also serves as a repository for the generation of shapes. While simple classes of
shapes like spheres and ellipsoids can be described via a small fixed set of parameters, the
definitions of polygons and polyhedra can be arbitrarily long depending on the number of
vertices of these shapes. The shape family API in coxeter provides a flexible way to define
and work with collections of related shapes, ranging from enumerable sets like the Platonic
solids to continuously defined sets of shapes (Chen et al., 2014). These different types of
shape families are handled using identical APIs, so users can easily switch between shapes
that have completely different mathematical definitions using a single line of code. Shape
families generate coxeter shape classes from input parameters, simplifying access to computed
geometric and physical properties.
A number of such families are bundled into coxeter, but just as importantly, the framework
allows users to work with arbitrary lists of shapes provided as dictionaries of attributes. This
dictionary-based definition can be simply converted to JSON, making it trivial to share repre-
sentations of shapes. The library also stores mappings from digital object identifiers (DOIs) to
families, so that any user can contribute families associated with published research to make
them collectively accessible. We anticipate that the set of shape families in coxeter will grow
over time as users generate and contribute their shape families to coxeter, with the goal of pro-
viding a centralized repository for use in reproducing and extending prior research, particularly
in the field of shape-driven nanoparticle self-assembly. Currently coxeter primarily supports
the schema proposed by the GSD library (Glotzer Lab, 2021), making it directly compatible
with the HOOMD-blue molecular simulation tool (Anderson et al., 2020), but other schema
can be implemented as needed.
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