
kuibit: Analyzing Einstein Toolkit simulations with
Python
Gabriele Bozzola1

1 Steward Observatory and Astronomy Department, University of Arizona
DOI: 10.21105/joss.03099

Software
• Review
• Repository
• Archive

Editor: Eloisa Bentivegna
Reviewers:

• @yurlungur
• @eloisabentivegna

Submitted: 30 January 2021
Published: 13 April 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

kuibit1 is a Python library for analyzing simulations performed with the Einstein Toolkit2

Löffler et al. (2012), a free and open-source code for numerical relativity and relativistic
astrophysics. Over the past years, numerical simulations like the ones enabled by the Einst
ein Toolkit have become a critical tool in modeling, predicting, and understanding several
astrophysical phenomena, including binary black hole or neutron star mergers. As a result of
the recent detections of gravitational waves by the LIGO-Virgo collaboration, these studies are
at the forefront of scientific research. The package presented in this paper, kuibit, provides
an intuitive infrastructure to read and represent the output of the Einstein Toolkit. This
simplifies analyzing simulations and significantly lowers the barrier in learning how to use the
tool.

Statement of need

The Einstein Toolkit is a software for numerical simulations based on the Cactus com-
putational framework (Goodale et al., 2003) and designed to be accessible for both users
and developers. Numerical-relativity simulations require large and complex codes, which have
to run on the world’s largest supercomputers. Einstein Toolkit significantly reduces this
complexity and improves accessibility by splitting infrastructure code from physics one. On
one side, there is memory management, parallelization, grid operations, and all the other low-
level details that are needed to successfully perform a simulation but do not strictly depend on
the physical system under consideration. On the other, there are the physics modules, which
implement the scientific aspects of the simulation. Codes are developed by domain-experts
and researchers can focus on their goals without having to worry about the technical details
of the implementation. This makes the Einstein Toolkit easier to use and extend.
Despite the advancements made by the Einstein Toolkit, there is still a big leap between
running a simulation and obtaining scientific results. The output from the Einstein Tool
kit is a collection of files with different formats and structures, with data that is typically
spread across multiple files (one or more for each MPI process) in various directories (one
per checkpoint). Reading the simulation output and properly combining all the data is a
challenging task. Even once the output is read, traditional data structures are not a good
representation of the physical quantities. For instance, representing variables defined on an
adaptive-mesh-refined grid as simple arrays completely ignores all the information on the grid

1A kuibit (harvest pole) is the tool traditionally used by the Tohono O’odham people to reach the fruit of
the Saguaro cacti during the harvesting season.

2While kuibit is designed for the Einstein Toolkit, most of its capabilities will work also for all the
other codes based on Cactus (Goodale et al., 2003). For instance, it is known that kuibit can be used to
analyze Illinois GRMHD (Duez et al., 2005) simulations.

Bozzola, G., (2021). kuibit: Analyzing Einstein Toolkit simulations with Python. Journal of Open Source Software, 6(60), 3099. https:
//doi.org/10.21105/joss.03099

1

https://doi.org/10.21105/joss.03099
https://github.com/openjournals/joss-reviews/issues/3099
https://github.com/Sbozzolo/kuibit/
https://doi.org/10.5281/zenodo.4681119
https://researcher.watson.ibm.com/person/ibm-Eloisa.Bentivegna
https://github.com/yurlungur
https://github.com/eloisabentivegna
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03099
https://doi.org/10.21105/joss.03099


structure, making some operations impractical or impossible to perform. The lack of suitable
interfaces introduces significant friction in exploring the scientific content of a simulation.
kuibit takes care of both the aspects of reading the simulation data and of providing high-
level representations of the data that closely follows what researchers are used to. In addition
to this, kuibit also includes a set of routines that are commonly used in the field: for
example, it handles unit conversion (including from geometrized units to physical), it has the
noise curves of known detectors, or it computes gravitational-waves from simulation data.
kuibit is based on the same design (and in various cases, implementation details too) of a
pre-existing package named PostCactus (Kastaun, n.d.). Like PostCactus, kuibit has two
groups of modules. The first is to define custom data-types for time series, Fourier spectra,
multipolar decompositions, and grid data (both on uniform grids and mesh-refined ones). The
second group consists of the readers, which are a collection of tools to scan the simulation
output and organize it. The main reader is a class SimDir which provides the interface to
access all the data in the simulation. For instance, the timeseries attribute in SimDir is
a dictionary-like object that contains all the time series in the output. When reading data,
kuibit takes care of all the low-level details, like handling transparently simulation restarts,
or merging grid data stored in different files. Therefore, users can easily access the data
regardless of how complicated the structure of the output is. Moreover, kuibit does not
assume any particular organization of the output and uses regular expressions to find the
relevant information from filenames or metadata, allowing for flexibility in the simulation
workflow.
Currently, kuibit is the only available package for quantitative analysis of simulations that
is free to use and that comes with documentation, tutorials, and examples. Tools like VisIt
(Childs et al., 2012) or rugutils (Guercilena, n.d.) focus only on visualizing grid data, while
other packages like POWER (Johnson et al., 2018), or pyGWAnalysis (Reisswig, n.d.) only on
gravitational-wave data. Capabilities similar to those of kuibit are offered by Simulatio
nTools (Hinder & Wardell, 2012), that runs on the proprietary Wolfram Mathematica, and
by PostCactus (Kastaun, n.d.) and scidata (Radice, n.d.), which, at the moment, do not
support Python3 and do not have documentation. In addition to this, several research groups
develop their own private analysis software.
kuibit embraces the core principles of the Einstein Toolkit: On one side, kuibit solves
the engineering problems of reading and representing Einstein Toolkit data, so that re-
searchers can directly pursue their scientific goals without having to worry about how the data
is stored. With kuibit, the entry barrier into using the Einstein Toolkit is the lowest it
has ever been, and students and researchers can inspect and visualize simulations in just a
few lines of code. On the other side, kuibit is designed to be a code for the community: it
is free and does not require any proprietary software to run, it is openly developed with an
emphasis on readability and maintainability, and it encourages contributions.

Acknowledgments

Gabriele Bozzola is supported by by the Frontera Fellowship by the Texas Advanced Computing
Center (TACC). Frontera (Stanzione et al., 2020) is founded by NSF grant OAC-1818253.
This work was in part supported by NSF Grant PHY-1912619 to the University of Arizona
and made use of computational resources provided by the Extreme Science and Engineering
Discovery Environment (XSEDE) under grant number TG-PHY190020. XSEDE is supported
by the NSF grant No. ACI-1548562. Gabriele Bozzola wishes to thank Wolfgang Kastaun for
publicly releasing his PostCactus package (Kastaun, n.d.) without which, kuibit would not
exist.

Bozzola, G., (2021). kuibit: Analyzing Einstein Toolkit simulations with Python. Journal of Open Source Software, 6(60), 3099. https:
//doi.org/10.21105/joss.03099

2

https://doi.org/10.21105/joss.03099
https://doi.org/10.21105/joss.03099


References

Brandt, S. R., Brendal, B., Gabella, W. E., Haas, R., Karakaş, B., Kedia, A., Rosofsky, S.
G., Schaffarczyk, A. P., Alcubierre, M., Alic, D., Allen, G., Ansorg, M., Babiuc-Hamilton,
M., Baiotti, L., Benger, W., Bentivegna, E., Bernuzzi, S., Bode, T., Bruegmann, B., …
Zlochower, Y. (2020). The einstein toolkit (The ”Turing” release, ET_2020_05). Zenodo.
https://doi.org/10.5281/zenodo.3866075

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller,
M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., & Navrátil, P. (2012). VisIt:
An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance
Visualization–Enabling Extreme-Scale Scientific Insight (pp. 357–372).

Duez, M. D., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. (2005). Relativistic magnetohy-
drodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D, 72,
024028. https://doi.org/10.1103/PhysRevD.72.024028

Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., & Shalf, J. (2003).
The Cactus framework and toolkit: Design and applications. Vector and Parallel Process-
ing – VECPAR’2002, 5th International Conference, Lecture Notes in Computer Science.
https://doi.org/10.1007/3-540-36569-9_13

Guercilena, F. (n.d.). Rugutils. In BitBucket repository. BitBucket. https://bitbucket.org/
relastro/rugutils

Hinder, I., & Wardell, B. (2012). SimulationTools. In BitBucket repository. BitBucket.
https://simulationtools.org

Johnson, D., Huerta, E. A., & Haas, R. (2018). Python Open source Waveform ExtractoR
(POWER): an open source, Python package to monitor and post-process numerical rel-
ativity simulations. Classical and Quantum Gravity, 35(2), 027002. https://doi.org/10.
1088/1361-6382/aa9cad

Kastaun, W. (n.d.). PyCactus. In GitHub repository. GitHub. https://github.com/wokast/
PyCactus

Löffler, F., Faber, J., Bentivegna, E., Bode, T., Diener, P., Haas, R., Hinder, I., Mundim, B.
C., Ott, C. D., Schnetter, E., Allen, G., Campanelli, M., & Laguna, P. (2012). The Einstein
Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class.
Quantum Grav., 29(11), 115001. https://doi.org/doi:10.1088/0264-9381/29/11/115001

Radice, D. (n.d.). Scidata. In BitBucket repository. BitBucket. https://bitbucket.org/
dradice/scidata

Reisswig, C. (n.d.). pyGWAnalysis. In SVN repository. Einstein Toolkit. https://svn.
einsteintoolkit.org/pyGWAnalysis/

Stanzione, D., West, J., Evans, R. T., Minyard, T., Ghattas, O., & Panda, D. K. (2020).
Frontera: The evolution of leadership computing at the national science foundation. Prac-
tice and Experience in Advanced Research Computing, 106–111. https://doi.org/10.1145/
3311790.3396656

Bozzola, G., (2021). kuibit: Analyzing Einstein Toolkit simulations with Python. Journal of Open Source Software, 6(60), 3099. https:
//doi.org/10.21105/joss.03099

3

https://doi.org/10.5281/zenodo.3866075
https://doi.org/10.1103/PhysRevD.72.024028
https://doi.org/10.1007/3-540-36569-9_13
https://bitbucket.org/relastro/rugutils
https://bitbucket.org/relastro/rugutils
https://simulationtools.org
https://doi.org/10.1088/1361-6382/aa9cad
https://doi.org/10.1088/1361-6382/aa9cad
https://github.com/wokast/PyCactus
https://github.com/wokast/PyCactus
https://doi.org/doi:10.1088/0264-9381/29/11/115001
https://bitbucket.org/dradice/scidata
https://bitbucket.org/dradice/scidata
https://svn.einsteintoolkit.org/pyGWAnalysis/
https://svn.einsteintoolkit.org/pyGWAnalysis/
https://doi.org/10.1145/3311790.3396656
https://doi.org/10.1145/3311790.3396656
https://doi.org/10.21105/joss.03099
https://doi.org/10.21105/joss.03099

	Summary
	Statement of need
	Acknowledgments
	References

