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Summary

The recent advancements in multicore machines highlight the need to simplify concurrent
programming in order to leverage their computational power. One way to achieve this is
by designing efficient concurrent data structures (e.g., stacks, queues, hash-tables) and syn-
chronization techniques (e.g., locks, combining techniques) that perform well in machines
with large numbers of cores. In contrast to ordinary, sequential data-structures, concurrent
data-structures can be accessed and/or modifed by multiple threads simultaneously.
Synch is an open-source framework that not only provides some common high-performant
concurrent data-structures, but it also provides researchers with the tools for designing and
benchmarking high performant concurrent data-structures. The Synch framework contains
a substantial set of concurrent data-structures such as queues, stacks, combining-objects,
hash-tables, and locks, and it provides a user-friendly runtime for developing and benchmark-
ing concurrent data-structures. Among other features, the runtime provides functionality for
creating threads (both POSIX and user-level) easily, tools for measuring performance, etc.
The Synch environment provides extensive and comprehensive documentation for all the im-
plemented concurrent data-structures and developers will find a comprehensive set of tests
to ensure quality and reproducibility of the results. Moreover, the provided concurrent data-
structures and the runtime are highly optimized for contemporary NUMA multiprocessors,
such as AMD Epyc and Intel Xeon.

Statement of need

The Synch framework aims to provide researchers with the appropriate tools for implementing
and evaluating state-of-the-art concurrent objects and synchronization mechanisms. More-
over, the Synch framework provides a substantial set of concurrent data-structures giving re-
searchers/developers the ability not only to implement their own concurrent data-structures,
but to compare with some state-of-the-art data-structures. Synch provides many state-of-the-
art concurrent objects that are thoroughly tested targeting x86_64 POSIX systems.
The Synch framework has been extensively used for implementing and evaluating concurrent
data-structures and synchronization techniques in papers, such as Fatourou & Kallimanis
(2011), Fatourou & Kallimanis (2012), Agathos et al. (2012), Fatourou & Kallimanis (2014),
Fatourou & Kallimanis (2018), and Fatourou et al. (2018).

Provided concurrent data-structures

The current version of the Synch framework provides a large set of high-performant concur-
rent data-structures, such as combining-objects, concurrent queues and stacks, concurrent
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hash-tables and locks. The cornerstone of the Synch framework are the combining objects. A
combining object is a concurrent object/data-structure that is able to simulate any other con-
current object, e.g. stacks, queues, atomic counters, barriers. The Synch framework provides
the PSim wait-free combining object (Fatourou & Kallimanis, 2011; Fatourou & Kallima-
nis, 2014), the blocking combining objects CC-Synch, DSM-Synch and H-Synch (Fatourou
& Kallimanis, 2012), and the blocking combining object based on the technique presented in
(Oyama et al., 1999). Moreover, the Synch framework provides the Osci blocking, combining
technique (Fatourou & Kallimanis, 2018) that achieves good performance using user-level
threads.
In terms of concurrent queues, the Synch framework provides the SimQueue (Fatourou &
Kallimanis, 2011; Fatourou & Kallimanis, 2014) wait-free queue implementation that is based
on the PSim combining object, and the CC-Queue, DSM-Queue and H-Queue (Fatourou &
Kallimanis, 2012) blocking queue implementations based on the CC-Synch, DSM-Synch and
H-Synch combining objects. A blocking queue implementation based on the CLH locks (Craig,
1993; Magnusson et al., 1994) and the lock-free implementation presented in Michael & Scott
(1996) are also provided. In terms of concurrent stacks, the Synch framework provides the
SimStack (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014) wait-free stack im-
plementation that is based on the PSim combining object, and the CC-Stack, DSM-Stack
and H-Stack (Fatourou & Kallimanis, 2012) blocking stack implementations based on the
CC-Synch, DSM-Synch and H-Synch combining objects. Moreover, the lock-free stack imple-
mentation of Treiber (1986) and the blocking implementation based on the CLH locks (Craig,
1993; Magnusson et al., 1994) are provided. The Synch framework also provides concurrent
queue and stacks implementations (OsciQueue and OsciStack implementations) that achieve
very high performance using user-level threads (Fatourou & Kallimanis, 2018).
Furthermore, the Synch framework provides a few scalable lock implementations: the MCS
queue-lock presented in Mellor-Crummey & Scott (1991) and the CLH queue-lock presented
in Craig (1993) and Magnusson et al. (1994). Finally, the Synch framework provides two
example-implementations of concurrent hash-tables. More specifically, it provides a simple
implementation based on CLH queue-locks (Craig, 1993; Magnusson et al., 1994) and an im-
plementation based on the DSM-Synch (Fatourou & Kallimanis, 2012) combining technique.
The following table presents a summary of the concurrent data-structures offered by the Synch
framework.

Concurrent Object Provided Implementations
Combining Objects CC-Synch, DSM-Synch and H-Synch (Fatourou & Kallimanis, 2012)

PSim (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
Osci (Fatourou & Kallimanis, 2018)
Oyama (Oyama et al., 1999)

Concurrent Queues CC-Queue, DSM-Queue and H-Queue (Fatourou & Kallimanis, 2012)
SimQueue (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
OsciQueue (Fatourou & Kallimanis, 2018)
CLH-Queue (Craig, 1993; Magnusson et al., 1994)
MS-Queue (Michael & Scott, 1996)
LCRQ (Morrison & Afek, n.d., 2013)

Concurrent Stacks CC-Stack, DSM-Stack and H-Stack (Fatourou & Kallimanis, 2012)
SimStack (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
OsciStack (Fatourou & Kallimanis, 2018)
CLH-Stack (Craig, 1993; Magnusson et al., 1994)
LF-Stack (Treiber, 1986)

Locks CLH (Craig, 1993; Magnusson et al., 1994)
MCS (Mellor-Crummey & Scott, 1991)

Hash Tables CLH-Hash (Craig, 1993; Magnusson et al., 1994)
A hash-table based on DSM-Synch (Fatourou & Kallimanis, 2012)
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Benchmarks and performance optimizations

For almost every concurrent data-structure, Synch provides at least one benchmark for eval-
uating its performance. The provided benchmarks allow users to assess the performance of
concurrent data-structures, as well as to perform some basic correctness tests on them. All
the provided benchmarks offer a great variety of command-line options for controlling the
duration of the benchmark, the amount of processing cores and/or threads to be used, the
contention, the type of threads (user-level or POSIX), etc.

Source code structure

The Synch framework (Figure 1) consists of three main parts: the Runtime/Primitives, the
Concurrent library, and the Benchmarks. The Runtime/Primitives part provides some basic
functionality for creating and managing threads, functionality for basic atomic primitives (e.g.,
Compare&Swap, Fetch&Add, fences, simple synchronization barriers), mechanisms for mem-
ory allocation/management (e.g., memory pools), functionality for measuring time, reporting
CPU counters, etc. Furthermore, the Runtime/Primitives provides a simple and lightweight
library of user level-threads (Fatourou & Kallimanis, 2018) that can be used to evaluate the
provided data-structures and algorithms. The Concurrent library utilizes the building blocks of
the Runtime/Primitives layer in order to provide all the concurrent data-structures (e.g., com-
bining objects, queues, stacks). For almost every concurrent data-structure or synchronization
mechanism, Synch provides at least one benchmark for evaluating its performance.

Figure 1: Code-structure of the Synch framework.

Requirements

• A modern 64-bit multi-core machine. Currently, 32-bit architectures are not supported.
The current version of this code is optimized for the x86_64 machine architecture, but
the code has also been successfully tested on other machine architectures, such as ARM-
V8 and RISC-V. Some of the benchmarks perform much better on architectures that
natively support Fetch&Add instructions (e.g., x86_64). For the case of x86_64 archi-
tecture, the code has been evaluated on numerous Intel and AMD multicore machines.
For the case of ARM-V8 architecture, the code has been successfully evaluated on a
Trenz Zynq UltraScale+ board (4 A53 Cortex cores) and on a Raspberry Pi 3 board
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(4 Cortex A53 cores). For the RISC-V architecture, the code has been evaluated on a
SiFive HiFive Unleashed (4 U54 RISC‑V cores).

• A recent Linux distribution.
• As a compiler, gcc version 4.8 or greater is recommended, but users may also try icx or

clang.
• Building the environment requires the following development packages:

– libatomic
– libnuma
– libpapi in case that the user wants to get some performance statistics for the

provided benchmarks.
• For building the documentation (i.e., man-pages), doxygen is required.

Related work

Scal (Haas et al., 2015) is another open-source framework that implements a set of con-
current data-structures. Scal also provides workloads for benchmarking the implemented
data-structures and the appropriate infrastructure for developing concurrent data-structures.
The provided data-structures types are limited to stacks, queues, dequeues, and pools. The
Scal framework does not provide any contemporary combining object, or more sophisticated
data-structures, e.g., hash-tables.
In (Hendler et al., n.d.), a few concurrent implementations for stacks and queues are provided.
Moreover, a concurrent pairing-heap implementation is provided by (Hendler et al., n.d.). The
(Hendler et al., n.d.) provides a stack, a queue, and a pairing-heap implementations based
on the flat-combining synchronization technique (Hendler et al., 2010).
The Concurrent Data Structures (CDS) library (The Concurrent Data Structures (CDS) Li-
brary, n.d.) provides several implementations for stacks, queues, hash-tables, and locks. More-
over, the CDS library provides an implementation of flat-combining (Hendler et al., 2010),
an implementation of a skip-list, and an AVL tree implementation. Although the CDS library
provides a rich set of concurrent data-structures, it does not provide any functionality for
benchmarking.
The Boost libraries (BOOST c++ Libraries, n.d.) provide a limited set of concurrent data-
structures. More specifically, the Boost.Lockfree library provides simple lock-free implemen-
tations for a queue, a stack, and a wait-free single-producer/single-consumer queue.
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