
Synch: A framework for concurrent data-structures and
benchmarks
Nikolaos D. Kallimanis1

1 Institute of Computer Science - Foundation for Research and Technology-Hellas (FORTH-ICS)
DOI: 10.21105/joss.03143

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @jarrah42
• @williamfgc

Submitted: 22 March 2021
Published: 31 August 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The recent advancements in multicore machines highlight the need to simplify concurrent
programming in order to leverage their computational power. One way to achieve this is
by designing efficient concurrent data structures (e.g., stacks, queues, hash-tables) and syn-
chronization techniques (e.g., locks, combining techniques) that perform well in machines
with large numbers of cores. In contrast to ordinary, sequential data-structures, concurrent
data-structures can be accessed and/or modifed by multiple threads simultaneously.
Synch is an open-source framework that not only provides some common high-performant
concurrent data-structures, but it also provides researchers with the tools for designing and
benchmarking high performant concurrent data-structures. The Synch framework contains
a substantial set of concurrent data-structures such as queues, stacks, combining-objects,
hash-tables, and locks, and it provides a user-friendly runtime for developing and benchmark-
ing concurrent data-structures. Among other features, the runtime provides functionality for
creating threads (both POSIX and user-level) easily, tools for measuring performance, etc.
The Synch environment provides extensive and comprehensive documentation for all the im-
plemented concurrent data-structures and developers will find a comprehensive set of tests
to ensure quality and reproducibility of the results. Moreover, the provided concurrent data-
structures and the runtime are highly optimized for contemporary NUMA multiprocessors,
such as AMD Epyc and Intel Xeon.

Statement of need

The Synch framework aims to provide researchers with the appropriate tools for implementing
and evaluating state-of-the-art concurrent objects and synchronization mechanisms. More-
over, the Synch framework provides a substantial set of concurrent data-structures giving re-
searchers/developers the ability not only to implement their own concurrent data-structures,
but to compare with some state-of-the-art data-structures. Synch provides many state-of-the-
art concurrent objects that are thoroughly tested targeting x86_64 POSIX systems.
The Synch framework has been extensively used for implementing and evaluating concurrent
data-structures and synchronization techniques in papers, such as Fatourou & Kallimanis
(2011), Fatourou & Kallimanis (2012), Agathos et al. (2012), Fatourou & Kallimanis (2014),
Fatourou & Kallimanis (2018), and Fatourou et al. (2018).

Provided concurrent data-structures

The current version of the Synch framework provides a large set of high-performant concur-
rent data-structures, such as combining-objects, concurrent queues and stacks, concurrent

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

1

https://doi.org/10.21105/joss.03143
https://github.com/openjournals/joss-reviews/issues/3143
https://github.com/nkallima/sim-universal-construction
https://doi.org/10.5281/zenodo.5347958
http://danielskatz.org/
https://github.com/jarrah42
https://github.com/williamfgc
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03143


hash-tables and locks. The cornerstone of the Synch framework are the combining objects. A
combining object is a concurrent object/data-structure that is able to simulate any other con-
current object, e.g. stacks, queues, atomic counters, barriers. The Synch framework provides
the PSim wait-free combining object (Fatourou & Kallimanis, 2011; Fatourou & Kallima-
nis, 2014), the blocking combining objects CC-Synch, DSM-Synch and H-Synch (Fatourou
& Kallimanis, 2012), and the blocking combining object based on the technique presented in
(Oyama et al., 1999). Moreover, the Synch framework provides the Osci blocking, combining
technique (Fatourou & Kallimanis, 2018) that achieves good performance using user-level
threads.
In terms of concurrent queues, the Synch framework provides the SimQueue (Fatourou &
Kallimanis, 2011; Fatourou & Kallimanis, 2014) wait-free queue implementation that is based
on the PSim combining object, and the CC-Queue, DSM-Queue and H-Queue (Fatourou &
Kallimanis, 2012) blocking queue implementations based on the CC-Synch, DSM-Synch and
H-Synch combining objects. A blocking queue implementation based on the CLH locks (Craig,
1993; Magnusson et al., 1994) and the lock-free implementation presented in Michael & Scott
(1996) are also provided. In terms of concurrent stacks, the Synch framework provides the
SimStack (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014) wait-free stack im-
plementation that is based on the PSim combining object, and the CC-Stack, DSM-Stack
and H-Stack (Fatourou & Kallimanis, 2012) blocking stack implementations based on the
CC-Synch, DSM-Synch and H-Synch combining objects. Moreover, the lock-free stack imple-
mentation of Treiber (1986) and the blocking implementation based on the CLH locks (Craig,
1993; Magnusson et al., 1994) are provided. The Synch framework also provides concurrent
queue and stacks implementations (OsciQueue and OsciStack implementations) that achieve
very high performance using user-level threads (Fatourou & Kallimanis, 2018).
Furthermore, the Synch framework provides a few scalable lock implementations: the MCS
queue-lock presented in Mellor-Crummey & Scott (1991) and the CLH queue-lock presented
in Craig (1993) and Magnusson et al. (1994). Finally, the Synch framework provides two
example-implementations of concurrent hash-tables. More specifically, it provides a simple
implementation based on CLH queue-locks (Craig, 1993; Magnusson et al., 1994) and an im-
plementation based on the DSM-Synch (Fatourou & Kallimanis, 2012) combining technique.
The following table presents a summary of the concurrent data-structures offered by the Synch
framework.

Concurrent Object Provided Implementations
Combining Objects CC-Synch, DSM-Synch and H-Synch (Fatourou & Kallimanis, 2012)

PSim (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
Osci (Fatourou & Kallimanis, 2018)
Oyama (Oyama et al., 1999)

Concurrent Queues CC-Queue, DSM-Queue and H-Queue (Fatourou & Kallimanis, 2012)
SimQueue (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
OsciQueue (Fatourou & Kallimanis, 2018)
CLH-Queue (Craig, 1993; Magnusson et al., 1994)
MS-Queue (Michael & Scott, 1996)
LCRQ (Morrison & Afek, n.d., 2013)

Concurrent Stacks CC-Stack, DSM-Stack and H-Stack (Fatourou & Kallimanis, 2012)
SimStack (Fatourou & Kallimanis, 2011; Fatourou & Kallimanis, 2014)
OsciStack (Fatourou & Kallimanis, 2018)
CLH-Stack (Craig, 1993; Magnusson et al., 1994)
LF-Stack (Treiber, 1986)

Locks CLH (Craig, 1993; Magnusson et al., 1994)
MCS (Mellor-Crummey & Scott, 1991)

Hash Tables CLH-Hash (Craig, 1993; Magnusson et al., 1994)
A hash-table based on DSM-Synch (Fatourou & Kallimanis, 2012)

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

2

https://doi.org/10.21105/joss.03143


Benchmarks and performance optimizations

For almost every concurrent data-structure, Synch provides at least one benchmark for eval-
uating its performance. The provided benchmarks allow users to assess the performance of
concurrent data-structures, as well as to perform some basic correctness tests on them. All
the provided benchmarks offer a great variety of command-line options for controlling the
duration of the benchmark, the amount of processing cores and/or threads to be used, the
contention, the type of threads (user-level or POSIX), etc.

Source code structure

The Synch framework (Figure 1) consists of three main parts: the Runtime/Primitives, the
Concurrent library, and the Benchmarks. The Runtime/Primitives part provides some basic
functionality for creating and managing threads, functionality for basic atomic primitives (e.g.,
Compare&Swap, Fetch&Add, fences, simple synchronization barriers), mechanisms for mem-
ory allocation/management (e.g., memory pools), functionality for measuring time, reporting
CPU counters, etc. Furthermore, the Runtime/Primitives provides a simple and lightweight
library of user level-threads (Fatourou & Kallimanis, 2018) that can be used to evaluate the
provided data-structures and algorithms. The Concurrent library utilizes the building blocks of
the Runtime/Primitives layer in order to provide all the concurrent data-structures (e.g., com-
bining objects, queues, stacks). For almost every concurrent data-structure or synchronization
mechanism, Synch provides at least one benchmark for evaluating its performance.

Figure 1: Code-structure of the Synch framework.

Requirements

• A modern 64-bit multi-core machine. Currently, 32-bit architectures are not supported.
The current version of this code is optimized for the x86_64 machine architecture, but
the code has also been successfully tested on other machine architectures, such as ARM-
V8 and RISC-V. Some of the benchmarks perform much better on architectures that
natively support Fetch&Add instructions (e.g., x86_64). For the case of x86_64 archi-
tecture, the code has been evaluated on numerous Intel and AMD multicore machines.
For the case of ARM-V8 architecture, the code has been successfully evaluated on a
Trenz Zynq UltraScale+ board (4 A53 Cortex cores) and on a Raspberry Pi 3 board

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

3

https://doi.org/10.21105/joss.03143


(4 Cortex A53 cores). For the RISC-V architecture, the code has been evaluated on a
SiFive HiFive Unleashed (4 U54 RISC‑V cores).

• A recent Linux distribution.
• As a compiler, gcc version 4.8 or greater is recommended, but users may also try icx or

clang.
• Building the environment requires the following development packages:

– libatomic
– libnuma
– libpapi in case that the user wants to get some performance statistics for the

provided benchmarks.
• For building the documentation (i.e., man-pages), doxygen is required.

Related work

Scal (Haas et al., 2015) is another open-source framework that implements a set of con-
current data-structures. Scal also provides workloads for benchmarking the implemented
data-structures and the appropriate infrastructure for developing concurrent data-structures.
The provided data-structures types are limited to stacks, queues, dequeues, and pools. The
Scal framework does not provide any contemporary combining object, or more sophisticated
data-structures, e.g., hash-tables.
In (Hendler et al., n.d.), a few concurrent implementations for stacks and queues are provided.
Moreover, a concurrent pairing-heap implementation is provided by (Hendler et al., n.d.). The
(Hendler et al., n.d.) provides a stack, a queue, and a pairing-heap implementations based
on the flat-combining synchronization technique (Hendler et al., 2010).
The Concurrent Data Structures (CDS) library (The Concurrent Data Structures (CDS) Li-
brary, n.d.) provides several implementations for stacks, queues, hash-tables, and locks. More-
over, the CDS library provides an implementation of flat-combining (Hendler et al., 2010),
an implementation of a skip-list, and an AVL tree implementation. Although the CDS library
provides a rich set of concurrent data-structures, it does not provide any functionality for
benchmarking.
The Boost libraries (BOOST c++ Libraries, n.d.) provide a limited set of concurrent data-
structures. More specifically, the Boost.Lockfree library provides simple lock-free implemen-
tations for a queue, a stack, and a wait-free single-producer/single-consumer queue.

Acknowledgments

This work was partially supported by the European Commission under the Horizon 2020
Framework Programme for Research and Innovation through the “European Processor Initia-
tive: Specific Grant Agreement 1” (Grant Agreement Nr 826647).
Many thanks to Panagiota Fatourou for all the fruitful discussions and her significant contribu-
tion on the concurrent data-structures implementations presented in (Fatourou & Kallimanis,
2011, 2012, 2018; Fatourou & Kallimanis, 2014).
Thanks also to Spiros Agathos for his feedback on the paper and committing some valuable
patches to the repository. Many thanks also to Eftychia Datsika for her feedback on the paper.

References

Agathos, S. N., Kallimanis, N. D., & Dimakopoulos, V. V. (2012). Speeding up OpenMP

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

4

https://doi.org/10.21105/joss.03143


tasking. Euro-Par 2012 Parallel Processing, 650–661. https://doi.org/10.1007/
978-3-642-32820-6_64

BOOST c++ libraries. (n.d.). www.boost.org
Craig, T. S. (1993). Building FIFO and priority queuing spin locks from atomic swap (No.

93-02-02). Computer Science Department, University of Washington.
Fatourou, P., & Kallimanis, N. D. (2011). A highly-efficient wait-free universal construction.

Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, 325–334. https://doi.org/10.1145/1989493.1989549

Fatourou, P., & Kallimanis, N. D. (2018). Lock Oscillation: Boosting the Performance of
Concurrent Data Structures. In J. Aspnes, A. Bessani, P. Felber, & J. Leitão (Eds.), 21st
international conference on principles of distributed systems (OPODIS 2017) (Vol. 95, pp.
8:1–8:17). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/
LIPIcs.OPODIS.2017.8

Fatourou, P., & Kallimanis, N. D. (2012). Revisiting the combining synchronization technique.
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 257–266. https://doi.org/10.1145/2145816.2145849

Fatourou, P., & Kallimanis, N. D. (2014). Highly-efficient wait-free synchronization. Theory
of Computing Systems, 55(3), 475–520. https://doi.org/10.1007/s00224-013-9491-y

Fatourou, P., Kallimanis, N. D., & Ropars, T. (2018). An efficient wait-free resizable hash
table. Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architec-
tures, 111–120. https://doi.org/10.1145/3210377.3210408

Haas, A., Hütter, T., Kirsch, C. M., Lippautz, M., Preishuber, M., & Sokolova, A. (2015).
Scal: A benchmarking suite for concurrent data structures. In A. Bouajjani & H. Fau-
connier (Eds.), Networked systems (pp. 1–14). Springer International Publishing. https:
//doi.org/10.1007/978-3-319-26850-7_1

Hendler, D., Incze, I., Shavit, N., & Tzafrir, M. (n.d.). Code for flat-combining. https:
//github.com/mit-carbon/Flat-Combining

Hendler, D., Incze, I., Shavit, N., & Tzafrir, M. (2010). Flat combining and
the synchronization-parallelism tradeoff. Proceedings of the Twenty-Second An-
nual ACM Symposium on Parallelism in Algorithms and Architectures, 355–364.
https://doi.org/10.1145/1810479.1810540

Magnusson, P., Landin, A., & Hagersten, E. (1994). Queue locks on cache coherent mul-
tiprocessors. Proceedings of 8th International Parallel Processing Symposium, 165–171.
https://doi.org/10.1109/IPPS.1994.288305

Mellor-Crummey, J. M., & Scott, M. L. (1991). Algorithms for scalable synchronization
on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1), 21–65. https:
//doi.org/10.1145/103727.103729

Michael, M. M., & Scott, M. L. (1996). Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, 267–275. https://doi.org/10.1145/248052.248106

Morrison, A., & Afek, Y. (n.d.). Code for LCRQ. http://mcg.cs.tau.ac.il/projects/lcrq
Morrison, A., & Afek, Y. (2013). Fast concurrent queues for X86 processors. Proceedings of

the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
103–112. https://doi.org/10.1145/2442516.2442527

Oyama, Y., Taura, K., & Yonezawa, A. (1999). Executing parallel programs with synchro-
nization bottlenecks efficiently. Proceedings of the International Workshop on Paral-
lel and Distributed Computing for Symbolic and Irregular Applications, 16, 95. https:
//doi.org/10.1142/4278

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

5

https://doi.org/10.1007/978-3-642-32820-6_64
https://doi.org/10.1007/978-3-642-32820-6_64
https://www.boost.org
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.4230/LIPIcs.OPODIS.2017.8
https://doi.org/10.4230/LIPIcs.OPODIS.2017.8
https://doi.org/10.1145/2145816.2145849
https://doi.org/10.1007/s00224-013-9491-y
https://doi.org/10.1145/3210377.3210408
https://doi.org/10.1007/978-3-319-26850-7_1
https://doi.org/10.1007/978-3-319-26850-7_1
https://github.com/mit-carbon/Flat-Combining
https://github.com/mit-carbon/Flat-Combining
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1109/IPPS.1994.288305
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/248052.248106
http://mcg.cs.tau.ac.il/projects/lcrq
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1142/4278
https://doi.org/10.1142/4278
https://doi.org/10.21105/joss.03143


The concurrent data structures (CDS) library. (n.d.). https://github.com/khizmax/libcds
Treiber, R. K. (1986). Systems programming: Coping with parallelism. (RJ-5118). Interna-

tional Business Machines Incorporated, Thomas J. Watson Research.

Kallimanis, N. D., (2021). Synch: A framework for concurrent data-structures and benchmarks. Journal of Open Source Software, 6(64), 3143.
https://doi.org/10.21105/joss.03143

6

https://github.com/khizmax/libcds
https://doi.org/10.21105/joss.03143

	Summary
	Statement of need
	Provided concurrent data-structures
	Benchmarks and performance optimizations
	Source code structure
	Requirements
	Related work

	Acknowledgments
	References

