
ExaFMM: a high-performance fast multipole method
library with C++ and Python interfaces
Tingyu Wang1, Rio Yokota2, and Lorena A. Barba1

1 The George Washington University 2 Tokyo Institute of Technology
DOI: 10.21105/joss.03145

Software
• Review
• Repository
• Archive

Editor: Jack Poulson
Reviewers:

• @berenger-eu
• @pitsianis

Submitted: 05 March 2021
Published: 30 May 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

ExaFMM is an open-source library for fast multipole algorithms, providing high-performance
evaluation of N-body problems in three dimensions, with C++ and Python interfaces. This
new implementation is the most recent of many across a decade of work in our research
group. Our goal for all these years has been to produce reusable, standard code for this
intricate algorithm. The new header-only C/C++ implementation is easier to extend, still
competitive with state-of-the-art codes, and includes a pybind11 Python interface (Jakob et
al., 2017).
The fast multipole method (FMM) was introduced more than 30 years ago (Greengard &
Rokhlin, 1987) as a means of reducing the complexity of N-body problems from O(N2) to
O(N) using hierarchical approximations of long-range interactions. Two major variants of hi-
erarchical N-body algorithms exist: treecodes and FMM. (Algebraic analogues also exist, such
as H-matrix methods.) Both were originally developed for fast evaluation of the gravitational
potential field, but now have found many applications in different fields. For example, the
integral formulation of problems modeled by elliptic partial differential equations can be rein-
terpreted as N-body interactions. In this way, N-body algorithms are applicable to acoustics,
electromagenetics, fluid dynamics, and more. The present version of ExaFMM implements the
so-called kernel-independent variant of FMM (Ying et al., 2004). It supports computing both
the potential and forces of Laplace, low-frequency Helmholtz and modified Helmholtz (a.k.a.
Yukawa) kernels. Users can add other non-oscillatory kernels with modest programming effort.

Statement of Need

Over the past three decades, a plethora of fast N-body implementations have emerged. We
will mention a few notable ones for context. Bonsai (Bédorf et al., 2012) is a gravitational
treecode that runs entirely on GPU hardware. ChaNGa (Jetley et al., 2008) is also a treecode
that uses Charm++ to automate dynamic load balancing. ScalFMM (Agullo et al., 2014)
implements the black-box FMM, a kernel-independent variant based on interpolation. It
comes with an option to use StarPU runtime system to handle heterogeneous task scheduling.
TBFMM (Bramas, 2020) is a task-based FMM library that features a generic C++ design to
support various types of tree structures and kernels, through heavy use of C++ templates.
PVFMM (Malhotra & Biros, 2015) can compute both particle and volume potentials using a
kernel-independent FMM, KIFMM (Ying et al., 2004).
The first version of ExaFMM focused on low-accuracy optimizations and implemented a dual-
tree traversal (Barba & Yokota, 2012; Yokota, 2013; Yokota & Barba, 2012). It was GPU-
enabled using CUDA, parallel with MPI and exploited multithreading using OpenMP. Despite
all these efforts, it has remained a challenge in the FMM community to have a well-established

Wang et al., (2021). ExaFMM: a high-performance fast multipole method library with C++ and Python interfaces. Journal of Open Source
Software, 6(61), 3145. https://doi.org/10.21105/joss.03145

1

https://doi.org/10.21105/joss.03145
https://github.com/openjournals/joss-reviews/issues/3145
https://github.com/exafmm/exafmm-t
https://doi.org/10.5281/zenodo.4874663
https://hodgestar.com
https://github.com/berenger-eu
https://github.com/pitsianis
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03145


open-source software package, analogous to FFTW for the fast Fourier transform, delivering
compelling performance with a standard and easy-to-use interface.
The “alpha” version of ExaFMM is long and complex, and hard to maintain. Its length is
partly due to a focus on fast execution, which led to specialized treatment of low-p evaluations
and extensive hand-coded optimizations. This emphasis on achieving high performance led to
poor reusability and maintainability. The current version uses the kernel-independent variant
of the method for higher performance at high accuracy (higher truncation order p). Keeping
focus on maintainability, it stays close to standards, with clean function interfaces, shallow
inheritance and conservative use of classes. Instead of a fixation with being the fastest of all,
we focus on “ballpark” competitive performance. Above all, the Python API and ability to
call it from Jupyter notebooks should make this software valuable for many applications.

Features of the software design

exafmm-t is designed to be standard and lean. First, it only uses C++ STL containers
and depends on mature math libraries: BLAS, LAPACK and FFTW3. Second, exafmm-t is
moderately object-oriented, namely, the usage of encapsulation, inheritance and polymorphism
is conservative or even minimal in the code. The core library consists of around 6,000 lines of
code, which is an order of magnitude shorter than many other FMM packages.
exafmm-t is concise but highly optimized. To achieve competitive performance, our work
combines techniques and optimizations from several past efforts. On top of multi-threading
using OpenMP, we further speed up the P2P operator (near-range interactions) using SIMD
vectorization with SSE/AVX/AVX-512 compatibility; we apply the cache optimization pro-
posed in PVFMM (Malhotra & Biros, 2015) to improve the performance of M2L operators
(far-range interactions). In addition, exafmm-t also allows users to pre-compute and store
translation operators, which benefits applications that require iterative FMM evaluations. The
single-node performance of exafmm-t is on par with the state-of-the-art packages that we
mentioned above. We ran a benchmark that solves a Laplace N-body problem with 1 million
randomly distributed particles on a workstation with a 14-core Intel i9-7940X CPU. It took
0.95 and 1.48 seconds to obtain 7 and 10 digits of accuracy on the potential, respectively.
exafmm-t is also relatively easy to extend. Adding a new kernel only requires users to create
a derived FMM class and provide the kernel function. Last but not least, it offers high-level
Python APIs to support Python applications. Thanks to pybind11, most STL containers
can be automatically converted to Python-native data structures. Since Python uses duck
typing, we have to expose overloaded functions to different Python objects. To avoid naming
collisions and keep a clean interface, we chose to create a Python module for each kernel
under exafmm-t’s Python package, instead of adding suffixes to function and class names to
identify types.

Application

We have recently integrated exafmm-t with Bempp-cl, an open-source boundary element
method (BEM) package in Python (Betcke & Scroggs, 2021), whose predecessor, BEM++
(Śmigaj et al., 2015), has enabled many acoustic and electromagnetic applications. In BEM
applications, computations are dominated by the dense matrix-vector multiplication (mat-
vec) in each iteration. exafmm-t reduces both time and memory cost of mat-vec to a linear
complexity, thus makes Bempp-cl feasible to solve large-scale problems. In an upcoming
paper, we demonstrate the capabilities and performance of Bempp-Exafmm on biomolecular
electrostatics simulations, including solving problems at the scale of a virus (Wang et al.,
2021). The showcase calculation in that paper (submitted) obtains the surface electrostatic

Wang et al., (2021). ExaFMM: a high-performance fast multipole method library with C++ and Python interfaces. Journal of Open Source
Software, 6(61), 3145. https://doi.org/10.21105/joss.03145

2

https://doi.org/10.21105/joss.03145


potential of a Zika virus, modeled with 1.6 million atoms, 10 million boundary elements (30M
points), at a runtime of 1.5 hours on 1 CPU node.

Acknowledgements

This software builds on efforts over more than a decade. It directly received support from
grants to LAB in both the UK and the US, including EPSRC Grant EP/E033083/1, and
NSF Grants OCI-0946441, NSF CAREER OAC-1149784, and CCF-1747669. Other support
includes faculty start-up funds at Boston University and George Washington University, and
NVIDIA via hardware donations.

References

Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., & Takahashi, T. (2014). Task-
based FMM for multicore architectures. SIAM Journal on Scientific Computing, 36(1),
C66–C93. https://doi.org/10.1137/130915662

Barba, L. A., & Yokota, R. (2012). ExaFMM: An open source library for Fast Multipole
Methods aimed towards Exascale systems. Poster on Figshare, under CC-BY license,
https://dx.doi.org/10.6084/m9.figshare.92166.v1. https://doi.org/10.6084/m9.figshare.
92166.v1

Betcke, T., & Scroggs, M. W. (2021). Bempp-cl: A fast python based just-in-time compiling
boundary element library. Journal of Open Source Software, 6(59), 2879. https://doi.
org/10.21105/joss.02879

Bédorf, J., Gaburov, E., & Portegies Zwart, S. (2012). A sparse octree gravitational N-body
code that runs entirely on the GPU processor. Journal of Computational Physics, 231(7),
2825–2839. https://doi.org/10.1016/j.jcp.2011.12.024

Bramas, B. (2020). TBFMM: A C++ generic and parallel fast multipole method library.
Journal of Open Source Software, 5(56), 2444. https://doi.org/10.21105/joss.02444

Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. J. Com-
put. Phys., 73(2), 325–348. https://doi.org/10.1016/0021-9991(87)90140-9

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – seamless operability between
c++11 and python.

Jetley, P., Gioachin, F., Mendes, C., Kale, L. V., & Quinn, T. (2008). Massively parallel
cosmological simulations with ChaNGa. 2008 IEEE International Symposium on Parallel
and Distributed Processing, 1–12. https://doi.org/10.1109/IPDPS.2008.4536319

Malhotra, D., & Biros, G. (2015). PVFMM: A Parallel Kernel Independent FMM for Parti-
cle and Volume Potentials. Communications in Computational Physics, 18(3), 808–830.
https://doi.org/10.4208/cicp.020215.150515sw

Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., & Schweiger, M. (2015). Solving Boundary
Integral Problems with BEM++. ACM Transactions on Mathematical Software, 41(2),
1–40. https://doi.org/10.1145/2590830

Wang, T., Cooper, C. D., Betcke, T., & Barba, L. A. (2021). High-productivity, high-
performance workflow for virus-scale electrostatic simulations with Bempp-Exafmm. http:
//arxiv.org/abs/2103.01048

Ying, L., Biros, G., & Zorin, D. (2004). A kernel-independent adaptive fast multipole algo-
rithm in two and three dimensions. Journal of Computational Physics, 196(2), 591–626.
https://doi.org/10.1016/j.jcp.2003.11.021

Wang et al., (2021). ExaFMM: a high-performance fast multipole method library with C++ and Python interfaces. Journal of Open Source
Software, 6(61), 3145. https://doi.org/10.21105/joss.03145

3

https://doi.org/10.1137/130915662
https://dx.doi.org/10.6084/m9.figshare.92166.v1
https://doi.org/10.6084/m9.figshare.92166.v1
https://doi.org/10.6084/m9.figshare.92166.v1
https://doi.org/10.21105/joss.02879
https://doi.org/10.21105/joss.02879
https://doi.org/10.1016/j.jcp.2011.12.024
https://doi.org/10.21105/joss.02444
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1109/IPDPS.2008.4536319
https://doi.org/10.4208/cicp.020215.150515sw
https://doi.org/10.1145/2590830
http://arxiv.org/abs/2103.01048
http://arxiv.org/abs/2103.01048
https://doi.org/10.1016/j.jcp.2003.11.021
https://doi.org/10.21105/joss.03145


Yokota, R. (2013). An FMM Based on Dual Tree Traversal for Many-Core Architectures.
Journal of Algorithms & Computational Technology, 7(3), 301–324. https://doi.org/10.
1260/1748-3018.7.3.301

Yokota, R., & Barba, L. A. (2012). A tuned and scalable fast multipole method as a pre-
eminent algorithm for exascale systems. The International Journal of High-Performance
Computing Applications. https://doi.org/10.1177/1094342011429952

Wang et al., (2021). ExaFMM: a high-performance fast multipole method library with C++ and Python interfaces. Journal of Open Source
Software, 6(61), 3145. https://doi.org/10.21105/joss.03145

4

https://doi.org/10.1260/1748-3018.7.3.301
https://doi.org/10.1260/1748-3018.7.3.301
https://doi.org/10.1177/1094342011429952
https://doi.org/10.21105/joss.03145

	Summary
	Statement of Need
	Features of the software design
	Application
	Acknowledgements
	References

