
Ngesh: a Python library for synthetic phylogenetic data
Tiago Tresoldi1, 2

1 Department of Linguistics and Philology, Uppsala University 2 Department of Linguistic and
Cultural Evolution, Max Planck Institute for Evolutionary Anthropology

DOI: 10.21105/joss.03173

Software
• Review
• Repository
• Archive

Editor: Mark A. Jensen
Reviewers:

• @DavidNickle
• @rvosa

Submitted: 24 March 2021
Published: 07 October 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

This work presents ngesh, a Python library for simulating phylogenetic trees and data, de-
signed for usage in development, debugging, and benchmarking of analysis pipelines and
methods for phylogenetic inference, particularly in historical linguistics and stemmatics. The
package generates reproducible stochastic simulations of evolution according to various crite-
ria, including character mutation rates and probability of horizontal transfer, and its results
can include the simulation of inadequate data compilation and sampling. Different output
formats are supported, both for visualization (such as plain text and with integrated graphical
viewers) and for software interoperability (such as Newick and NEXUS).

Background

Computational phylogenetics is being increasingly accepted in fields beyond biology, such as
historical linguistics (Bouckaert et al., 2012) and stemmatics (Robinson, 2016). Stochastic
simulations, long advocated for natural sciences in general (Bailey, 1964) and genetics in
specific (Foote et al., 1999; Harmon, 2018), are not used enough in these fields. Nonetheless,
they are very desirable, allowing to evaluate evolutionary analogies, models, and performance
through vast amounts of simulated histories, without limits imposed by data availability and
collection time, with quantifiable precision of results. Simulations can also be used to perform
fuzzy testing of software and to support studies on which evolutionary models, processes, and
evolutionary parameters better match the observed phenomena.
The ngesh library is a tool that allows to perform such simulations, designed for easy in-
tegration into phylogenetic pipelines. It can generate reproducible trees and correlated data
following both user-established parameters, such as ratios of birth and death, and constraints,
such as branch lengths and minimum number of taxa. The library can label taxa progressive
enumeration or with random names that are easy to pronounce (e.g., “Sume” and “Fekobir”)
or which imitate the binominal nomenclature (e.g., “Sburas wioris” and “Zurbata pusso”).
Character evolution related to the tree topology can likewise be simulated, including ex novo
mutations and horizontal gene transfers. Results can be manipulated in diverse manners, for
example by pruning extinct leaves or simulating uneven sampling. The simulated trees are
standard ETE3 objects (Huerta-Cepas et al., 2016) and may be exported into different formats
such as Newick trees, ASCII-art representation, and tabular lists.

Statement of need

The library addresses the need of more tools to investigate and teach phylogenetics in historical
linguistics and stemmatics. As a building block for evaluating pipelines of analysis, it is an

Tresoldi, T., (2021). Ngesh: a Python library for synthetic phylogenetic data. Journal of Open Source Software, 6(66), 3173. https:
//doi.org/10.21105/joss.03173

1

https://doi.org/10.21105/joss.03173
https://github.com/openjournals/joss-reviews/issues/3173
https://github.com/tresoldi/ngesh
https://doi.org/10.5281/zenodo.5552605
https://www.linkedin.com/in/fortinbras/
https://github.com/DavidNickle
https://github.com/rvosa
http://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/ngesh/
https://pypi.org/project/ngesh/
https://doi.org/10.21105/joss.03173
https://doi.org/10.21105/joss.03173


alternative to the basic technique of randomizing taxa placement in existing cladograms, and
to simpler tools such as the one by Noutahi (2017) or the populate() method of ETE3’s
Tree class (Huerta-Cepas et al., 2016). While there are many other alternatives available
for simulating trees, including TreeSim (Stadler, 2011), geiger (Pennell et al., 2014), ape
(Paradis & Schliep, 2018), and DendroPy (Sukumaran & Holder, 2021), ngesh compares
favorably in historical linguistics and stemmatics. For the former, it provides default parameters
that produce trees closer to those found in the field, particularly in terms of the simulation of
horizontal transfers (i.e., loanword), all while using formats that better fit the existing linguistic
pipelines, such as CLDF (Forkel et al., 2018), and laying ground for the usage of different
character values (such as sound changes) besides the default cognate-sets for modelling lexical
replacement. For the latter, where Bayesian phylogenetics have been gaining traction at a
slower pace, the library constitutes the first general-purpose tool available and should help
make these methods for popular.

Installation, Usage, & Examples

Users can install the library with the standard pip tool for managing Python packages. Trees
can be generated from the command-line, defaulting to small phylogenies in Newick format:

$ ngesh
(Ukis:1.11985,(Koge:0.880823,(Rozkob:0.789548,(Meu:0.706601,
(((Felbuh:0.189693,Kefa:0.189693)1:0.117347,((Epib:0.153782,
Vugog:0.153782)1:0.0884745,Puluk:0.242256)1:0.0647836)1:0.0469885,
Efam:0.354028)1:0.352573)1:0.0829465)1:0.0912757)1:0.23903);

The tool supports both configuration files and command-line flags that take precedence over
the former. Here we specify a model to generate Nexus data for a reproducible Yule tree, with
a birth rate of 0.75, at least 5 leaves, “human” labels, and 20 presence/absence features:

$ cat my_tree.conf
[Config]
labels=human
birth=0.75
death=0.0
output=nexus
min_leaves=5
num_chars=20
$ ngesh -c my_tree.conf --seed 12345
begin data;

dimensions ntax=6 nchar=33;
format datatype=standard missing=? gap=-;
matrix

Buza 111110110111011011010101000100110
Lenlar 111111010110111101100010010011001
Mukom 111110111011011011101001000100110
Pagil 111110110111011011100100100100110
Suglu 111110110111011011100011001001010
Wite 111110110111011011100101000100110

;
end;

Despite the benefit of a stand-alone tool, the package is designed to be run as a library. The
two primary functions are gen_tree(), which returns a random tree, and add_characters(),

Tresoldi, T., (2021). Ngesh: a Python library for synthetic phylogenetic data. Journal of Open Source Software, 6(66), 3173. https:
//doi.org/10.21105/joss.03173

2

https://doi.org/10.21105/joss.03173
https://doi.org/10.21105/joss.03173


which adds character evolution data to a tree. Users can generate random trees without
character information or simulate character evolution within existing trees, including non-
simulated ones.

>>> import ngesh
>>> tree = ngesh.gen_tree(1.0, 0.5, max_time=0.3, labels="bio",

seed="135")
>>> print(tree)

/-Lubedsas larpes
--|

| /-Rasso wimapudda
\-|

\-Sbaes rapis
>>> print(tree.write())
(Lubedsas larpes:0.201311,(Rasso wimapudda:0.0894405,Sbaes rapis:0.0894405)
1:0.11187);
>>> tree = ngesh.add_characters(tree, 15, 2.0, 0.5)

Besides the write() method above, which outputs Newick trees, results can be exported
in either NEXUS format with tree2nexus() or in a textual tabular format with tree2wo
rdlist(). Phylogenetic reconstruction can then be carried either by manually building an
XML model for BEAST2 (Bouckaert et al., 2019) (normally with the aid of the graphical
interface BEAUTi) or by using tools such as BEASTling (Maurits et al., 2017), producing
a tree distribution. This distribution can be summarized to a maximum clade credibility
(“MCC”) tree with phylogenetic packages, allowing both visual and quantitative comparisons.
A demonstration of such steps is provided with the user documentation (“Integrating with
other software”).

Code and Documentation Availability

The ngesh source code is available on GitHub at https://github.com/tresoldi/ngesh.
User documentation is available at https://ngesh.readthedocs.io/.

Acknowledgements

The author has received funding from the Riksbankens Jubileumsfond (ID: MXM19-1087:1,
“Cultural Evolution of Texts”) and from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (No. ERC #715618,
“Computer-Assisted Language Comparison”).

References

Bailey, N. T. J. (1964). The elements of stochastic processes with applications to the natural
sciences. John Wiley & Sons. https://doi.org/10.2307/2333730

Bouckaert, R., Lemey, P., Dunn, M., Greenhill, S. J., Alekseyenko, A. V., Drummond, A.
J., Gray, R. D., Suchard, M. A., & Atkinson, Q. D. (2012). Mapping the origins and
expansion of the indo-european language family. Science, 337(6097), 957–960. https:
//doi.org/10.1126/science.1219669

Tresoldi, T., (2021). Ngesh: a Python library for synthetic phylogenetic data. Journal of Open Source Software, 6(66), 3173. https:
//doi.org/10.21105/joss.03173

3

https://github.com/tresoldi/ngesh
https://ngesh.readthedocs.io/
https://www.rj.se/en/anslag/2019/cultural-evolution-of-texts/
https://digling.org/calc/
https://doi.org/10.2307/2333730
https://doi.org/10.1126/science.1219669
https://doi.org/10.1126/science.1219669
https://doi.org/10.21105/joss.03173
https://doi.org/10.21105/joss.03173


Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina,
A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. K.,
Müller, N. F., Ogilvie, H. A., Plessis, L. du, Popinga, A., Rambaut, A., Rasmussen, D.,
Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform
for bayesian evolutionary analysis. PLOS Computational Biology, 15(4), 1–28. https:
//doi.org/10.1371/journal.pcbi.1006650

Foote, M., Hunter, J. P., Janis, C. M., & Sepkoski, J. J. (1999). Evolutionary and preserva-
tional constraints on origins of biologic groups: Divergence times of eutherian mammals.
Science, 283(5406), 1310–1314. https://doi.org/10.1126/science.283.5406.1310

Forkel, R., List, J.-M., Greenhill, S. J., Rzymski, C., Bank, S., Cysouw, M., Hammarström,
H., Haspelmath, M., Kaiping, G. A., & Gray, R. D. (2018). Cross-linguistic data formats,
advancing data sharing and re-use in comparative linguistics. Scientific Data, 5(1), 1–10.
https://doi.org/10.1038/sdata.2018.205

Harmon, L. J. (2018). Phylogenetic comparative methods: Learning from trees. CreateSpace
Independent Publishing. https://doi.org/10.32942/osf.io/e3xnr

Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and
Visualization of Phylogenomic Data. Molecular Biology and Evolution, 33(6), 1635–1638.
https://doi.org/10.1093/molbev/msw046

Maurits, L., Forkel, R., Kaiping, G. A., & Atkinson, Q. D. (2017). BEASTling: A software
tool for linguistic phylogenetics using BEAST 2. PloS One, 12(8). https://doi.org/10.
1371/journal.pone.0180908

Noutahi, M.-R. (2017). How to simulate a phylogenetic tree? https://mrnoutahi.com/2017/
12/05/How-to-simulate-a-tree/

Paradis, E., & Schliep, K. (2018). Ape 5.0: An environment for modern phylogenetics
and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/
bioinformatics/bty633

Pennell, M., Eastman, J., Slater, G., Brown, J., Uyeda, J., FitzJohn, R., Alfaro, M., & Harmon,
L. (2014). Geiger v2.0: An expanded suite of methods for fitting macroevolutionary
models to phylogenetic trees. Bioinformatics, 30, 2216–2218. https://doi.org/10.1093/
bioinformatics/btu181

Robinson, P. (2016). The digital revolution in scholarly editing. Ars Edendi Lecture Series, 4,
181–207. https://doi.org/10.16993/baj.h

Stadler, T. (2011). Simulating trees with a fixed number of extant species. Systematic
Biology, 60(5), 676–684. https://doi.org/10.1093/sysbio/syr029

Sukumaran, J., & Holder, M. T. (2021). The DendroPy phylogenetic computing library
documentation. Retrieved apr 08, 2021. http://dendropy.org/

Tresoldi, T., (2021). Ngesh: a Python library for synthetic phylogenetic data. Journal of Open Source Software, 6(66), 3173. https:
//doi.org/10.21105/joss.03173

4

https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1126/science.283.5406.1310
https://doi.org/10.1038/sdata.2018.205
https://doi.org/10.32942/osf.io/e3xnr
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1371/journal.pone.0180908
https://doi.org/10.1371/journal.pone.0180908
https://mrnoutahi.com/2017/12/05/How-to-simulate-a-tree/
https://mrnoutahi.com/2017/12/05/How-to-simulate-a-tree/
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.16993/baj.h
https://doi.org/10.1093/sysbio/syr029
http://dendropy.org/
https://doi.org/10.21105/joss.03173
https://doi.org/10.21105/joss.03173

	Summary
	Background
	Statement of need
	Installation, Usage, & Examples
	Code and Documentation Availability
	Acknowledgements
	References

