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Summary

imodels is a Python package for concise, transparent, and accurate predictive modeling. It
provides users a simple interface for fitting and using state-of-the-art interpretable models,
all compatible with scikit-learn (Pedregosa et al., 2011). These models can often replace
black-box models while improving interpretability and computational efficiency, all without
sacrificing predictive accuracy. In addition, the package provides a framework for developing
custom tools and rule-based models for interpretability.

Statement of need

Recent advancements in machine learning have led to increasingly complex predictive models,
often at the cost of interpretability. There is often a need for models which are inherently
interpretable (Murdoch et al., 2019; Rudin, 2019), particularly in high-stakes applications
such as medicine, biology, and political science. In these cases, interpretability can ensure
that models behave reasonably, identify when models will make errors, and make the models
more trusted by domain experts. Moreover, interpretable models tend to be much more
computationally efficient then larger black-box models.
Despite the development of many methods for fitting interpretable models (Molnar, 2020),
implementations for such models are often difficult to find, use, and compare to one another.
imodels aims to fill this gap by providing a simple unified interface and implementation for
many state-of-the-art interpretable modeling techniques.

Features

Interpretable models can take various forms. Figure 1 shows four possible forms a model in
the imodels package can take. Each form constrains the final model in order to make it
interpretable, but there are different methods for fitting the model which differ in their biases
and computational costs. The imodels package contains implementations of various such
methods and also useful functions for recombining and extending them.
Rule sets consist of a set of rules which each act independently. There are different strategies
for deriving a rule set, such as Skope-rules (Skope Collaboration, 2021) or Rulefit (Friedman
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et al., 2008). Rule lists are composed of a set of rules which act in sequence, and include
models such as Bayesian rule lists (Letham et al., 2015) or the oneR algorithm (Holte, 1993).
Rule trees are similar to rule lists, but allow branching after rules. This includes models such
as CART decision trees (Breiman et al., 1984). Algebraic models take a final form of simple
algebraic expressions, such as supersparse linear integer models (Ustun & Rudin, 2016).

Figure 1: Examples of different supported model forms. The bottom of each box shows predictions
of the corresponding model as a function of X1 and X2.
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