
Sapsan: Framework for Supernovae Turbulence Modeling
with Machine Learning
Platon I. Karpov1, 2, Iskandar Sitdikov3, Chengkun Huang2, and Chris
L. Fryer2

1 Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 2 Los Alamos
National Laboratory, Los Alamos, NM 3 Provectus IT Inc., Palo Alto, CA

DOI: 10.21105/joss.03199

Software
• Review
• Repository
• Archive

Editor: Dan Foreman-Mackey
Reviewers:

• @kburns
• @milescranmer

Submitted: 02 April 2021
Published: 26 November 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Sapsan is a framework designed to make Machine Learning (ML) more accessible in the study
of turbulence, with a focus on astrophysical applications. Sapsan includes modules to load,
filter, subsample, batch, and split the data from hydrodynamic (HD) simulations for training
and validation. Next, the framework includes built-in conventional and physically-motivated
estimators that have been used for turbulence modeling. This ties into Sapsan’s custom
estimator module, aimed at designing a custom ML model layer-by-layer, which is the core
benefit of using the framework. To share your custom model, every new project created
via Sapsan comes with pre-filled, ready-for-release Docker files. Furthermore, training and
evaluation modules come with Sapsan as well. The latter, among other features, includes
the construction of power spectra and comparison to established analytical turbulence closure
models, such as a gradient model. Thus, Sapsan attempts to minimize the hard work required
for data preparation and analysis, leaving one to focus on the ML model design itself.

Statement of Need

Domain sciences have been slow to adopt Machine Learning (ML) for a range of projects, but
particularly for physical simulations modeling turbulence. It is challenging to prove that an
ML model has learned the laws of physics in a particular problem, and that it has the ability
to extrapolate within the parameter-space of the simulation. The inability to directly infer
the predictive capabilities of ML is one of the major causes behind the slow adoption rates;
however, the community cannot ignore the effectiveness of ML.
Turbulence is ubiquitous in astrophysical environments, however, it involves physics at a vast
range of temporal and spatial scales, making accurate fully-resolved modeling difficult. Various
analytical turbulence models have been developed to be used in simulations using temporal
or spatial averaged governing equations, such as RANS (Reynolds-averaged Navier-Stokes)
and LES (Large Eddy Simulation), but the accuracy of these methods is sometimes inade-
quate. In search of better methods to model turbulence in core-collapse supernovae, it became
apparent that ML has the potential to produce more accurate turbulence models on an un-
averaged subgrid-scale than the current methods. Scientists from both industry and academia
(King et al., 2016; Zhang et al., 2018) have already begun using ML for applied turbulent
problems. Still, none of these efforts have yet reached the scales relevant for the physics
and astronomy community on a practical level. For example, physics-based model evaluation
and interpretability tools are not standardized, nor are they widely available. As a result, it
is a common struggle to verify published results, with the setup not fully documented, the
opaquely structured code lacking clear commenting, or even worse, not publicly available. This

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

1

https://doi.org/10.21105/joss.03199
https://github.com/openjournals/joss-reviews/issues/3199
https://github.com/pikarpov-LANL/Sapsan
https://doi.org/10.5281/zenodo.5720254
https://dfm.io
https://github.com/kburns
https://github.com/milescranmer
http://creativecommons.org/licenses/by/4.0/
https://github.com/pikarpov-LANL/Sapsan
https://doi.org/10.21105/joss.03199


is a problem that the broader ML community can relate to as well (Hutson, 2018). Thus, it
is not surprising that there is considerable skepticism against ML in physical sciences, with
astrophysics being no exception (Carleo et al., 2019).
In pursuit of our supernova (SNe) study, the issues outlined above became painfully appar-
ent. Thus, we have attempted to lower the barrier to entry for new researchers in domain
science fields studying turbulence to employ ML, with the main focus on astrophysical appli-
cations. As a result, we developed an ML Python-based pipeline called Sapsan. The goals
have been to make this library accessible and shared with the community through Jupyter
Notebooks, a command-line-interface (CLI) and a graphical-user-interface (GUI)1 available
for end-users. Sapsan includes built-in optimized ML models for turbulence treatment, both
conventional and physics-based. More importantly, at its core, the framework is meant to be
flexible and modular; hence there is an intuitive interface for users to work on their own ML
algorithms. Most of the mundane turbulence ML researcher needs, such as data preprocessing
and prediction analysis, can be automated through Sapsan, with a streamlined process of
custom estimator development. In addition, Sapsan brings best practices from the industry
regarding ML development frameworks. For example, Sapsan includes docker containers for
reproducible release, as well as MLflow for experiment tracking. Thus, Sapsan is a single,
complete interface for ML-based turbulence research.
Sapsan is distributed through GitHub and pip. For further reference, wiki is maintained on
GitHub as well.

Framework

Sapsan organizes workflow via three respective stages: data preparation, machine learning,
and analysis, as shown in Figure 1. The whole process can be further distributed using Docker
for reproducibility. Let’s break down each stage in the context of turbulence subgrid modeling,
e.g., a model to predict turbulent behavior at the under-resolved simulation scales.

• Data Preparation

– Loading Data: Sapsan is ready to process common 2D & 3D hydrodynamic (HD)
and magnetohydrodynamic (MHD) turbulence data in simulation-code-specific
data formats, such as HDF5 (with more to come per community need).

– Transformations: A variety of tools are available for the user to prepare data for
training:

∗ Filtering: To build a subgrid model, one will have to filter the data to, for
example, remove small-scale perturbations. Some possible choices include a
box, spectral, or Gaussian filter. The data can be filtered on the fly within the
framework.

∗ Sampling: to run quick tests of your model, you might want to test on a
sampled version of the data while retaining the full spatial domain. For this
application, equidistant sampling is available in Sapsan.

∗ Batching & Splitting: The data are spatially batched and divided into testing
and validation subsets.

• Machine Learning

– Model Setup: Different ML models may be appropriate for different physical
regimes, and Sapsan provides templates for a selection of both conventional and
physics-based models with more to come. Only the most important options are
left up to the user to edit, with most overhead kept in the backend. This stage

1A demo is available at sapsan.app.

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

2

https://mlflow.org/
https://github.com/pikarpov-LANL/Sapsan
https://pypi.org/project/sapsan/
https://github.com/pikarpov-LANL/Sapsan/wiki
https://sapsan.app/
https://doi.org/10.21105/joss.03199


also includes tools for defining ML layers, tracking parameters, and choosing and
tuning optimization algorithms.

• Analysis

– Trained Model: A turbulence subgrid model defines how small-scale structure
affects the large scale quantities. In other words, it completes or ‘’closes” the
governing large-scale equations of motion with small-scale terms. The prediction
from a trained ML model is used to provide the needed quantities.

– Analytical Tools: There are also methods included for comparing the trained
model with conventional analytic turbulence models [such as the Dynamic
Smagorisnky, Lilly (1966); or Gradient, Liu et al. (1994); models], or to conduct
other tests of, for example, the power spectrum of the model prediction.

For further information on each stage, please refer to Sapsan’s Wiki on Gihub.

Figure 1: High-level overview of Sapsan's workflow.

Dependencies

The following is a list of the core functional dependencies2 and a short description of how
they are used within Sapsan:

• PyTorch: Sapsan, at large, relies on PyTorch to configure and train ML models.
Thus, the parameters in the aforementioned Model Setup stage should be configured
with PyTorch functions. Convolutional Neural Network (CNN) and Physics-Informed
Convolutional Auto Encoder (PICAE) examples included with Sapsan are based on
PyTorch. (Paszke et al., 2019)

• Scikit-learn: A alternative to PyTorch, as demonstrated in the Kernel Ridge Regression
(KRR) example in Sapsan. Since scikit-learn is less flexible and scalable than
PyTorch, PyTorch is the recommended interface. (Pedregosa et al., 2011)

• Catalyst: used as part of the backend to configure early-stopping of the model and
logging. (Kolesnikov, 2018)

• MLflow: provides an intuitive web interface for tracking the results of large experiments
and parameter studies. Beyond a few default parameters, a user can include custom
parameters to be tracked. (Databricks, 2020)

• Jupyter Notebook: the most direct and versatile way to use Sapsan.
2Please refer to GitHub for the complete list of dependencies.

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

3

https://github.com/pikarpov-LANL/Sapsan/wiki
https://github.com/pikarpov-LANL/Sapsan/blob/master/sapsan/examples/cnn_example.ipynb
https://github.com/pikarpov-LANL/Sapsan/blob/master/sapsan/examples/picae_example.ipynb
https://github.com/pikarpov-LANL/Sapsan/blob/master/sapsan/examples/picae_example.ipynb
https://github.com/pikarpov-LANL/Sapsan/blob/master/sapsan/examples/krr_example.ipynb
https://github.com/pikarpov-LANL/Sapsan/blob/master/sapsan/examples/krr_example.ipynb
https://github.com/pikarpov-LANL/Sapsan
https://doi.org/10.21105/joss.03199


• Streamlit (GUI): a graphical user interface (GUI) for Sapsan. While not as flexible as
the other interfaces, this can be useful for developing public-facing demonstrations. An
example of this interface can be found online at sapsan.app. (Treuille, 2019)

• Click (CLI): a command-line interface (CLI) for Sapsan. It is used to get the user up
and running with templates for a custom project. (Ronacher, 2021)

Applications

While Sapsan is designed to be highly customizable for a wide variety of projects in the physical
sciences, it is optimized for the study of turbulence. In this section we will demostrate various
capabilities of Sapsan working with 2D and 3D data, various machine learning libraries, and
built-in analytical tools. The ML methods used are included in Sapsan's distribution as
example Jupyter notebooks to get started with the framework.

Hydro simulations

Here is an examples of a turbulence closure model trained on the high-resolution Johns Hopkins
Turbulence Database (JHTDB, Li et al., 2008). The training data is a 2D slice of a direct
numerical simulation (DNS) of a statistically-stationary isotropic 3D MHD turbulence dataset,
10243 in spatial resolution and covering roughly one large eddy turnover time over 1024
checkpoints, i.e. the dynamical time of the system (Eyink et al., 2013). We compare it with
a commonly used Dynamic Smagorinsky (DS) turbulence closure model (Lilly, 1966). On the
Sapsan side, a Kernel Ridge Regression model (Murphy, 2012) by the means of scikit-learn
is used to demonstrate the effectiveness of conventional ML approaches in tackling turbulence
problems. In this test, we used the following setup:

• Train features: velocity (u), vector potential (A), magnetic field (B), and their respec-
tive derivatives a checkpoint = 0. All quantities have been filtered down to 15 Fourier
modes to remove small-scale perturbations, mimicking the lower fidelity of a non-DNS
simulation. Next they were sampled down to 1283, with the last step leaving a single
slice of 1282 ready for training.

• Model Input: low fidelity velocity (u), vector potential (A), magnetic field (B), and
their respective derivatives at a set checkpoint = 10.

• Model Output: velocity stress tensor component (τxy) at the matching checkpoint
in the future, which effectively represents the difference between large and small scale
structures of the system.

In Figure 2, it can be seen that the ML-based approach significantly outperforms the DS
subgrid model in reproducing the probability density function, i.e., a statistical distribution of
the stress tensor. The results are consistent with (King et al., 2016).

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

4

https://sapsan.app
https://doi.org/10.21105/joss.03199


Figure 2: Predicting a 2D turbulent stress-tensor component (τxy) in statistically-stationary isotropic
MHD turbulence setup. The left plot compares the original spatial map of the stress-tensor component
to the predicted spatial map (middle). The plot on the right presents probability density functions
(PDF), i.e., distributions, of the original stress-tensor component values, the ML predicted values,
and the conventional Dynamic Smagorinsky (DS) subgrid model prediction.

Supernovae

Even though the conventional regression-based ML approach worked well in the 2D setup from
the previous example, the complexity of our physical problem forced us to seek out a more
sophisticated ML method. Supernovae host a different physical regime that is far from the
idealistic MHD turbulence case from before. Here we are dealing with dynamically evolving
turbulence that is not necessarily isotropic. Turbulence can behave drastically differently
depending on the evolutionary stage. With Sapsan, we have tested a 3D CNN (Convolutional
Neural Network) model built with PyTorch to predict a turbulent velocity stress tensor in a
realistic Core-Collapse Supernova (CCSN) case. Figure 3 presents results of the following:

• Train features: velocity (u), magnetic field (B), and their respective derivatives at time
steps before 5 ms (halfway of the total simulation). All quantities have been filtered
down with a σ = 9 Gaussian filter to remove small-scale perturbations, mimicking the
lower fidelity of a non-DNS simulation. Lastly they were sampled from the original 3483
down to 1163 in resolution.

• Model Input: low fidelity velocity (u), magnetic field (B), and their respective deriva-
tives at a set time step in the future beyond 5 ms.

• Model Output: velocity stress tensor components (τij) at the matching time step
in the future, which effectively represents the difference between large and small scale
structures of the system.

In this case, the probability density functions are overall consistent, with minor disagreement
at the positive outliers, even though the prediction is performed far into the future (time =
9.48 ms, end of the simulation time). Predictive advantage is highlighted when compared
with the analytical Gradient model that misses a large portion of positive data.

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

5

https://doi.org/10.21105/joss.03199


Figure 3: Predicting turbulent stress-tensor component in a core-collapse supernovae (CCSN). The
model has been trained on a selection of dynamically evolving turbulence timesteps during the first 5
ms (out of the total ∼ 10 ms) of a 3D MHD direct numerical simulation (DNS) after the shockwave
bounced off the core in a CCSN scenario. On the left, the two figures are the 2D slices of a 3D τxy
prediction, with the right plot comparing PDFs of the original 3D data, 3D ML prediction, and a
conventional Gradient subgrid model.

Acknowledgements

The development of Sapsan was supported by the Laboratory Directed Research and Develop-
ment program and the Center for Space and Earth Science at Los Alamos National Laboratory
through the student fellow grant. We would like to thank DOE SciDAC for additional funding
support.

References

Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &
Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of Modern
Physics, 91(4), 045002. https://doi.org/10.1103/RevModPhys.91.045002

Databricks, I. (2020). MLflow. In GitHub repository. https://github.com/mlflow/mlflow;
GitHub.

Eyink, G., Vishniac, E., Lalescu, C., Aluie, H., Kanov, K., Bürger, K., Burns, R., Meneveau, C.,
& Szalay, A. (2013). Flux-freezing breakdown in high-conductivity magnetohydrodynamic
turbulence. Nature, 497(7450), 466–469. https://doi.org/10.1038/nature12128

Hutson, M. (2018). Artificial intelligence faces reproducibility crisis. Science, 359(6377),
725–726. https://doi.org/10.1126/science.359.6377.725

King, R. N., Hamlington, P. E., & Dahm, W. J. A. (2016). Autonomic closure for turbulence
simulations. Phys. Rev. E, 93, 031301. https://doi.org/10.1103/PhysRevE.93.031301

Kolesnikov, S. (2018). Accelerated DL r&d. In GitHub repository. https://github.com/
catalyst-team/catalyst; GitHub.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A.,
& Eyink, G. (2008). A public turbulence database cluster and applications to study
Lagrangian evolution of velocity increments in turbulence. Journal of Turbulence, 9, N31.
https://doi.org/10.1080/14685240802376389

Lilly, D. K. (1966). On the application of the eddy viscosity concept in the Inertial sub-range
of turbulence. NCAR Manuscript 123.

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

6

https://doi.org/10.1103/RevModPhys.91.045002
https://github.com/mlflow/mlflow
https://doi.org/10.1038/nature12128
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1103/PhysRevE.93.031301
https://github.com/catalyst-team/catalyst
https://github.com/catalyst-team/catalyst
https://doi.org/10.1080/14685240802376389
https://doi.org/10.21105/joss.03199


Liu, S., Meneveau, C., & Katz, J. (1994). On the properties of similarity subgrid-scale models
as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–
119. https://doi.org/10.1017/S0022112094002296

Murphy, K. P. (2012). Machine learning: A probabilistic perspective (pp. 492–493). The
MIT Press.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Ronacher, A. (2021). Click. https://click.palletsprojects.com/
Treuille, A. (2019). Turn python scripts into beautiful ML tools. Towards Data Science, 8.
Zhang, W., Zhu, L., Liu, Y., & Kou, J. (2018). Machine learning methods for turbulence

modeling in subsonic flows over airfoils. arXiv e-Prints, arXiv:1806.05904. http://arxiv.
org/abs/1806.05904

Karpov et al., (2021). Sapsan: Framework for Supernovae Turbulence Modeling with Machine Learning. Journal of Open Source Software,
6(67), 3199. https://doi.org/10.21105/joss.03199

7

https://doi.org/10.1017/S0022112094002296
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://click.palletsprojects.com/
http://arxiv.org/abs/1806.05904
http://arxiv.org/abs/1806.05904
https://doi.org/10.21105/joss.03199

	Summary
	Statement of Need
	Framework
	Dependencies

	Applications
	Hydro simulations
	Supernovae

	Acknowledgements
	References

