
PySDM v1: particle-based cloud modeling package for
warm-rain microphysics and aqueous chemistry
Piotr Bartman1, Oleksii Bulenok1, Kamil Górski1, Anna Jaruga2,
Grzegorz Łazarski1,3, Michael A. Olesik4, Bartosz Piasecki1, Clare E.
Singer2, Aleksandra Talar1, and Sylwester Arabas5,1

1 Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland 2
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena,
CA, USA 3 Faculty of Chemistry, Jagiellonian University, Kraków, Poland 4 Faculty of Physics,
Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland 5 University of
Illinois at Urbana-Champaign, Urbana, IL, USA

DOI: 10.21105/joss.03219

Software
• Review
• Repository
• Archive

Editor: David Hagan
Reviewers:

• @darothen
• @josephhardinee

Submitted: 31 March 2021
Published: 24 April 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Introduction
PySDM is an open-source Python package for simulating the dynamics of particles undergoing
condensational and collisional growth, interacting with a fluid flow and subject to chemical
composition changes. It is intended to serve as a building block for process-level as well as
computational-fluid dynamics simulation systems involving representation of a continuous phase
(air) and a dispersed phase (aerosol), with PySDM being responsible for representation of the
dispersed phase. For major version 1 (v1), the development has been focused on atmospheric
cloud physics applications, in particular on modeling the dynamics of particles immersed in
moist air using the particle-based approach to represent the evolution of the size spectrum of
aerosol/cloud/rain particles. The particle-based approach contrasts the more commonly used
bulk and bin methods in which atmospheric particles are segregated into multiple categories
(aerosol, cloud and rain) and their evolution is governed by deterministic dynamics solved on the
same Eulerian grid as the dynamics of the continuous phase. Particle-based methods employ
discrete computational (super) particles for modeling the dispersed phase. Each super particle
is associated with a set of continuously-valued attributes evolving in Lagrangian manner. Such
approach is particularly well suited for using probabilistic representation of particle collisional
growth (coagulation) and for representing processes dependent on numerous particle attributes
which helps to overcome the limitations of bulk and bin methods (Morrison et al., 2020).

The PySDM package core is a Pythonic high-performance implementation of the Super-Droplet
Method (SDM) Monte-Carlo algorithm for representing collisional growth (Shima et al., 2009),
hence the name. The SDM is a probabilistic alternative to the mean-field approach embodied
by the Smoluchowski equation, for a comparative outline of both approaches see Bartman
& Arabas (2021). In atmospheric aerosol-cloud interactions, particle collisional growth is
responsible for the formation of rain drops through collisions of smaller cloud droplets (warm-rain
process) as well as for aerosol washout.

Besides collisional growth, PySDM includes representation of condensation/evaporation of water
vapour to/from the particles. Furthermore, representation of dissolution and, if applicable,
dissociation of trace gases (sulfur dioxide, ozone, hydrogen peroxide, carbon dioxide, nitric acid,
and ammonia) is included to model the subsequent aqueous-phase oxidation of the dissolved
sulfur dioxide. Representation of the chemical processes follows the particle-based formulation
of Jaruga & Pawlowska (2018).

The usage examples are built on top of four different environment classes included in PySDM

v1 which implement common simple atmospheric cloud modeling frameworks: box, adiabatic

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

1

https://doi.org/10.21105/joss.03219
https://github.com/openjournals/joss-reviews/issues/3219
https://github.com/atmos-cloud-sim-uj/PySDM.git
https://doi.org/10.5281/zenodo.6321270
https://www.quant-aq.com/meet-the-team
https://github.com/darothen
https://github.com/josephhardinee
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03219

parcel, single-column, and 2D prescribed flow kinematic models.

In addition, the package ships with tutorial code depicting how PySDM can be used from Julia

and Matlab using the PyCall.jl and the Matlab-bundled Python interface, respectively. Two
exporter classes are available as of time of writing enabling storage of particle attributes and
gridded products in the VTK format and storage of gridded products in netCDF format.

Dependencies and supported platforms
PySDM essential dependencies are: NumPy, SciPy, Numba, Pint, and ChemPy which are all free
and open-source software available via the PyPI platform. PySDM releases are published at
the PyPI Python package index allowing installation using the pip package manager (i.e.,
pip install PySDM).

PySDM has two alternative parallel number-crunching backends available: multi-threaded CPU
backend based on Numba (Lam et al., 2015) and GPU-resident backend built on top of
ThrustRTC (Yang, 2020). The optional GPU backend relies on proprietary vendor-specific
CUDA technology, the accompanying non-free software and drivers; ThrustRTC and CURandRTC

packages are released under the Anti-996 license.

The usage examples for Python were developed embracing the Jupyter interactive platform
allowing control of the simulations via web browser. All Python examples are ready for use
with the mybinder.org and the Google Colab platforms.

Continuous integration infrastructure used in the development of PySDM assures the targeted
full usability on Linux, macOS, and Windows environments. Compatibility with Python versions
3.7 through 3.9 is maintained as of the time of writing. Test coverage for PySDM is reported
using the codecov.io platform. Coverage analysis of the backend code requires execution
with JIT-compilation disabled for the CPU backend (e.g., using the NUMBA_DISABLE_JIT=1

environment variable setting). For the GPU backend, a purpose-built FakeThrust class is
shipped with PySDM which implements a subset of the ThrustRTC API and translates C++
kernels into equivalent Numba parallel Python code for debugging and coverage analysis.

The Pint dimensional analysis package is used for unit testing. It allows asserting on the
dimensionality of arithmetic expressions representing physical formulae. In order to enable JIT
compilation of the formulae for simulation runs, a purpose-built FakeUnitRegistry class that
mocks the Pint API reducing its functionality to SI prefix handling is used by default outside
of tests.

API in brief
In order to depict PySDM API with a practical example, the following listings provide sample
code roughly reproducing the Figure 2 from the Shima et al. (2009) paper in which the SDM
algorithm was introduced.

It is a coalescence-only set-up in which the initial particle size spectrum is exponential and is
deterministically sampled to match the condition of each super particle having equal initial
multiplicity, with the multiplicity denoting the number of real particles represented by a single
computational particle:

from PySDM.physics import si

from PySDM.initialisation.sampling import spectral_sampling

from PySDM.initialisation.spectra import Exponential

N_SD = 2 ** 17

initial_spectrum = Exponential(

norm_factor=8.39e12, scale=1.19e5 * si.um ** 3)

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

2

https://doi.org/10.21105/joss.03219

attributes = {}

sampling = spectral_sampling.ConstantMultiplicity(initial_spectrum)

attributes['volume'], attributes['n'] = sampling.sample(N_SD)

In the above snippet, the si is an instance of the FakeUnitRegistry class. The exponential
distribution of particle volumes is sampled at 217 points in order to initialize two key attributes
of the super-droplets, namely their volume and multiplicity. Subsequently, a Builder object
is created to orchestrate dependency injection while instantiating the Particulator class of
PySDM:

import numpy as np

from PySDM.builder import Builder

from PySDM.environments import Box

from PySDM.dynamics import Coalescence

from PySDM.dynamics.collisions.collision_kernels import Golovin

from PySDM.backends import CPU

from PySDM.products import ParticleVolumeVersusRadiusLogarithmSpectrum

builder = Builder(n_sd=N_SD, backend=CPU())

builder.set_environment(Box(dt=1 * si.s, dv=1e6 * si.m ** 3))

builder.add_dynamic(Coalescence(collision_kernel=Golovin(b=1.5e3 / si.s)))

radius_bins_edges = np.logspace(

start=np.log10(10 * si.um),

stop=np.log10(5e3 * si.um),

num=32

)

products = (ParticleVolumeVersusRadiusLogarithmSpectrum(

radius_bins_edges=radius_bins_edges,

name='dv/dlnr'

),)

particulator = builder.build(attributes, products)

The backend argument may be set to an instance of either CPU or GPU what translates to
choosing the multi-threaded Numba-based backend or the ThrustRTC-based GPU-resident
computation mode, respectively. The employed Box environment corresponds to a zero-
dimensional framework (particle positions are neglected). The SDM Monte-Carlo coalescence
algorithm is added as the only dynamic in the system (other dynamics available as of time of
writing represent condensational growth, particle displacement, aqueous chemistry, ambient
thermodynamics, and Eulerian advection). Finally, the build() method is used to obtain
an instance of the Particulator class which can then be used to control time-stepping and
access simulation state through the products registered with the builder. A minimal simulation
example is depicted below with a code snippet and a resultant plot (Figure 1):

from PySDM.physics.constants_defaults import rho_w

from matplotlib import pyplot

for step in [0, 1200, 2400, 3600]:

particulator.run(step - particulator.n_steps)

pyplot.step(

x=radius_bins_edges[:-1] / si.um,

y=particulator.products['dv/dlnr'].get().squeeze() * rho_w/si.g,

where='post', label=f”t = {step}s”)

pyplot.xscale('log')

pyplot.xlabel(r'particle radius [μ m]')

pyplot.ylabel(”dm/dlnr [g/m3/(unit dr/r)]”)

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

3

https://doi.org/10.21105/joss.03219

pyplot.legend()

pyplot.show()

Figure 1: Sample plot generated with the code snippets included in the paper.

Usage examples
The PySDM examples are shipped in a separate package that can also be installed with pip (p
ip install PySDM-examples) or conveniently experimented with using Colab or mybinder.org
platforms (single-click launching badges included in the PySDM README file). The examples
are based on setups from literature, and the package is structured using bibliographic labels
(e.g., PySDM_examples.Shima_et_al_2009).

All examples feature a settings.py file with simulation parameters, a simulation.py file
including logic analogous to the one presented in the code snippets above for handling
composition of PySDM components using the Builder class, and a Jupyter notebook file with
simulation launching code and basic result visualisation.

Box environment examples

The Box environment is the simplest one available in PySDM, and the PySDM-examples package
ships with two examples based on it. The first is an extension of the code presented in the
snippets in the preceding section and reproduces Fig. 2 from the seminal paper of Shima et
al. (2009). Coalescence is the only process considered, and the probabilities of collisions of
particles are evaluated using the Golovin additive kernel, which allows to compare the results
with analytical solution of the Smoluchowski equation (included in the resultant plots).

The second example based on the Box environment, also featuring collision-only setup, re-
produces several figures from the work of Berry (1966) involving more sophisticated collision
kernels representing such phenomena as the geometric sweep-out and the influence of electric
field on the probability of collisions.

Adiabatic parcel examples

The Parcel environment shares the zero-dimensionality of Box (i.e., no particle physical
coordinates considered), yet provides a thermodynamic evolution of the ambient air mimicking
adiabatic displacement of an air parcel in hydrostatically stratified atmosphere. Adiabatic
cooling during the ascent results in supersaturation which triggers activation of aerosol particles
(condensation nuclei) into cloud droplets through condensation. All examples based on the
Parcel environment utilize the Condensation and AmbientThermodynamics dynamics.

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

4

https://doi.org/10.21105/joss.03219

The simplest example uses a monodisperse particle spectrum represented with a single super-
droplet and reproduces simulations described in Arabas & Shima (2017) where an ascent-descent
scenario is employed to depict hysteresis behaviour of the activation/deactivation phenomena.

A polydisperse lognormal spectrum represented with multiple super-droplets is used in the
example based on the work of Yang et al. (2018). Simulations presented involve repeated
ascent-descent cycles and depict the evolution of partitioning between activated and unactivated
particles. Similarly, polydisperse lognormal spectra are used in the example based on Lowe et
al. (2019), where additionally each lognormal mode has a different hygroscopicity. The Lowe
et al. (2019) example features representation of droplet surface tension reduction by organics.

Finally, there are two examples featuring adiabatic parcel simulations involving representation of
the dynamics of chemical composition of both ambient air and the droplet-dissolved substances,
in particular focusing on the oxidation of aqueous-phase sulfur. The examples reproduce the
simulations discussed in Kreidenweis et al. (2003) and in Jaruga & Pawlowska (2018).

Kinematic (prescribed-flow) examples

Coupling of PySDM with fluid-flow simulation is depicted with both 1D and 2D prescribed-flow
simulations, both dependent on the PyMPDATA package (Bartman et al., 2021) implementing
the MPDATA advection algorithm. For a review on MPDATA, see e.g., Smolarkiewicz (2006).

Usage of the kinematic_1d environment is depicted in an example based on the work of
Shipway & Hill (2012). The kinematic_2d environment is showcased with an interactive user
interface which allows study of aerosol-cloud interactions in a drizzling stratocumulus setup
based on the works of Morrison & Grabowski (2007) and Arabas et al. (2015).

Figure 2 presents a snapshot from the 2D simulation performed with a setup described in detail
in Arabas et al. (2015). Each plot depicts a 1.5 km by 1.5 km vertical slab of an idealized
atmosphere in which a prescribed single-eddy non-divergent flow is forced (updraft in the
left-hand part of the domain, downdraft in the right-hand part). The left-hand plot shows
the distribution of aerosol particles in the air. The upper part of the domain is covered with
a stratocumulus-like cloud formed on aerosol particles above the flat cloud base at the level
where relative humidity goes above 100%. Within the cloud, the aerosol concentration is thus
reduced. The middle plot depicts the wet radius of particles. Particles larger than 1 micrometre
in diameter are considered as cloud droplets, particles larger than 50 micrometres in diameter
are considered as drizzle (unlike in bin or bulk models, such categorisation is employed for
analysis only and not within the particle-based model formulation). Concentration of drizzle
particles forming through collisions is depicted in the right-hand panel. A rain shaft forms in
the right part of the domain where the downward flow direction amplifies particle sedimentation.
Precipitating drizzle drops collide with aerosol particles washing out the sub-cloud aerosol.
Most of the drizzle drops evaporate before reaching the bottom of the domain depicting the
virga phenomenon and the resultant aerosol resuspension.

Figure 2: Results from a 2D prescribed-flow simulation using the Arabas et al. (2015) example.

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

5

https://doi.org/10.21105/joss.03219

Selected relevant recent open-source developments
The SDM algorithm implementations are part of the following open-source packages (of
otherwise largely differing functionality):

• libcloudph++ in C++ (Arabas et al., 2015; Jaruga & Pawlowska, 2018) with Python
bindings (Jarecka et al., 2015);

• SCALE-SDM in Fortran, (Sato et al., 2018);
• PALM LES in Fortran, (Maronga et al., 2020);
• LCM1D in Python/C, (Unterstrasser et al., 2020);
• Pencil Code in Fortran, (Brandenburg et al., 2021);
• NTLP in Fortran, (Richter et al., 2021).
• superdroplet in Python (Cython and Numba), C++, Fortran and Julia

(https://github.com/darothen/superdroplet);

A list of links directing to SDM-related files within the above projects’ repositories is included
in the PySDM README file.

Python packages for solving the dynamics of aerosol particles with discrete-particle (moving-
sectional) representation of the size spectrum include (both depend on the Assimulo package
for solving ODEs):

• pyrcel, (Rothenberg & Wang, 2017);
• PyBox, (Topping et al., 2018).

Summary
The key goal of the reported endeavour was to equip the cloud modeling community with
a solution enabling rapid development and independent reproducibility of simulations while
being free from the two-language barrier commonly separating prototype and high-performance
research code. The key advantages of PySDM stem from the characteristics of the employed
Python language which enables high performance computational modeling without trading off
such features as:

succinct syntax – the snippets presented in the paper are arguably close to pseudo-code;

portability depicted in PySDM with continuous integration Linux, macOS and Windows;

interoperability depicted in PySDM with Matlab and Julia usage examples requireing minimal
amount of biding-specific code;

multifaceted ecosystem depicted in PySDM with one-click execution of Jupyter notebooks
on mybinder.org and colab.research.google.com platforms;

availability of tools for modern hardware depicted in PySDM with the GPU backend.

PySDM together with a set of developed usage examples constitutes a tool for research on
cloud microphysical processes, and for testing and development of novel modeling methods.
PySDM is released under the GNU GPL v3 license.

Author contributions
PB had been the architect and lead developer of PySDM v1 with SA taking the role of main
developer and maintainer over the time. PySDM 1.0 release accompanied PB’s MSc thesis
prepared under the mentorship of SA. MO contributed to the development of the condensation
solver and led the development of relevant examples. GŁ contributed the initial draft of
the aqueous-chemistry extension which was refactored and incorporated into PySDM under
guidance from AJ. KG and BP contributed to the GPU backend. CS and AT contributed to

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

6

https://github.com/darothen/superdroplet
https://doi.org/10.21105/joss.03219

the examples. OB contributed the VTK exporter. The paper was composed by SA and PB
and is partially based on the content of the PySDM README file and PB’s MSc thesis.

Acknowledgements
We thank Shin-ichiro Shima (University of Hyogo, Japan) for his continuous help and support
in implementing SDM. We thank Fei Yang (https://github.com/fynv/) for creating and
supporting ThrustRTC. Development of PySDM has been initiated with support from the
POWROTY/REINTEGRATION programme of the Foundation for Polish Science co-financed
by the European Union under the European Regional Development Fund (POIR.04.04.00-
00-5E1C/18). We gratefully acknowledge the generous support of Eric and Wendy Schmidt
(by recommendation of Schmidt Futures), the Heising-Simons Foundation, and the National
Science Foundation (grant AGS-1835860).

References
Arabas, S., Jaruga, A., Pawlowska, H., & Grabowski, W. W. (2015). libcloudph++ 1.0:

A single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics
library in C++. Geosci. Model Dev. https://doi.org/10.5194/gmd-8-1677-2015

Arabas, S., & Shima, S. (2017). On the CCN (de)activation nonlinearities. Nonlin. Process.
Geophys. https://doi.org/10.5194/npg-24-535-2017

Bartman, P., & Arabas, S. (2021). On the design of Monte-Carlo particle coagulation solver
interface: A CPU/GPU super-droplet method case study with PySDM. Lect. Notes
Comput. Sci., 12743. https://doi.org/10.1007/978-3-030-77964-1_2

Bartman, P., Banaśkiewicz, J., Drenda, S., Manna, M., Olesik, M., Rozwoda, P., Sadowski, M.,
& Arabas, S. (2021). PyMPDATA v1: Numba-accelerated implementation of MPDATA
with examples in Python, Julia and Matlab. In J. Open Source Soft. (subm.). https:
//github.com/atmos-cloud-sim-uj/PyMPDATA

Berry, E. X. (1966). Cloud droplet growth by collection. J. Atmos. Sci. https://doi.org/10.
1175/1520-0469(1967)024%3C0688:CDGBC%3E2.0.CO;2

Brandenburg, A., Johansen, A., Bourdin, P. A., Dobler, W., Lyra, W., Rheinhardt, M., Bingert,
S., Haugen, N. E. L., Mee, A., Gent, F., Babkovskaia, N., Yang, C.-C., Heinemann,
T., Dintrans, B., Mitra, D., Candelaresi, S., Warnecke, J., Käpylä, P. J., Schreiber,
A., … Qian, C. (2021). The Pencil Code, a modular MPI code for partial differential
equations and particles: Multipurpose and multiuser-maintained. J. Open Source Soft.
https://doi.org/10.21105/joss.02807

Jarecka, D., Arabas, S., & Del Vento, D. (2015). Python bindings for libcloudph++. ArXiv
e-Prints. https://arxiv.org/abs/1504.01161

Jaruga, A., & Pawlowska, H. (2018). libcloudph++ 2.0: Aqueous-phase chemistry extension
of the particle-based cloud microphysics scheme. Geosci. Model Dev. https://doi.org/10.
5194/gmd-11-3623-2018

Kreidenweis, S. M., Walcek, C. J., Feingold, G., Gong, W., Jacobson, M. Z., Kim, C. H., Liu,
X., Penner, J. E., Nenes, A., & Seinfeld, J. H. (2003). Modification of aerosol mass and
size distribution due to aqueous‐phase SO2 oxidation in clouds: Comparisons of several
models. J. Geophys. Res. https://doi.org/10.1029/2002JD002673

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. https:
//doi.org/10.1145/2833157.2833162

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

7

https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/npg-24-535-2017
https://doi.org/10.1007/978-3-030-77964-1_2
https://github.com/atmos-cloud-sim-uj/PyMPDATA
https://github.com/atmos-cloud-sim-uj/PyMPDATA
https://doi.org/10.1175/1520-0469(1967)024%3C0688:CDGBC%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)024%3C0688:CDGBC%3E2.0.CO;2
https://doi.org/10.21105/joss.02807
https://arxiv.org/abs/1504.01161
https://doi.org/10.5194/gmd-11-3623-2018
https://doi.org/10.5194/gmd-11-3623-2018
https://doi.org/10.1029/2002JD002673
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.21105/joss.03219

Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D., & Riipinen, I.
(2019). Key drivers of cloud response to surface-active organics. Nature Comm. https:
//doi.org/10.1038/s41467-019-12982-0

Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V.,
Gehrke, K., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten,
A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., & Raasch,
S. (2020). Overview of the PALM model system 6.0. Geosci. Model Dev. https:
//doi.org/10.5194/gmd-13-1335-2020

Morrison, H., & Grabowski, W. W. (2007). Comparison of bulk and bin warm-rain microphysics
models using a kinematic framework. J. Atmos. Sci. https://doi.org/10.1175/JAS3980

Morrison, H., Lier-Walqui, M. van, Fridlind, A. M., Grabowski, W. W., Harrington, J. Y.,
Hoose, C., Korolev, A., Kumjian, M. R., Milbrandt, J. A., Pawlowska, H., Posselt, D. J.,
Prat, O. P., Reimel, K. J., Shima, S., Diedenhoven, B. van, & Xue, L. (2020). Confronting
the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth
Syst. https://doi.org/10.1029/2019MS001689

Richter, D. H., MacMillan, T., & Wainwright, C. (2021). A Lagrangian cloud model
for the study of marine fog. Boundary-Layer Meteorol. https://doi.org/10.1007/
s10546-020-00595-w

Rothenberg, D., & Wang, C. (2017). An aerosol activation metamodel of v1.2.0 of the pyrcel
cloud parcel model: Development and offline assessment for use in an aerosol–climate
model. Geosci. Model. Dev. https://doi.org/10.5194/gmd-10-1817-2017

Sato, Y., Shima, S., & Tomita, H. (2018). Numerical convergence of shallow convection
cloud field simulations: Comparison between double‐moment Eulerian and particle‐based
Lagrangian microphysics coupled to the same dynamical core. J. Adv. Model. Earth Syst.
https://doi.org/10.1029/2018MS001285

Shima, S., Kusano, K., Kawano, A., Sugiyama, T., & Kawahara, S. (2009). The super‐droplet
method for the numerical simulation of clouds and precipitation: A particle‐based and
probabilistic microphysics model coupled with a non‐hydrostatic model. Q. J. Royal
Meteorol. Soc. https://doi.org/10.1002/qj.441

Shipway, B. J., & Hill, A. A. (2012). Diagnosis of systematic differences between multiple
parametrizations of warm rain microphysics using a kinematic framework. Q. J. Royal
Meteorol. Soc. https://doi.org/10.1002/qj.1913

Smolarkiewicz, P. K. (2006). Multidimensional positive definite advection transport algorithm:
An overview. Int. J. Numer. Methods Fluids. https://doi.org/10.1002/fld.1071

Topping, D., Connolly, P., & Reid, J. (2018). PyBox: An automated box-model generator for
atmospheric chemistry and aerosol simulations. J. Open Source Soft. https://doi.org/10.
21105/joss.00755

Unterstrasser, S., Hoffmann, F., & Lerch, M. (2020). Collisional growth in a particle-based
cloud microphysical model: Insights from column model simulations using LCM1D (v1.0).
Geosci. Model Dev. https://doi.org/10.5194/gmd-13-5119-2020

Yang, F. (2020). ThrustRTC: CUDA tool set for non-C++ languages that provides similar
functionality like Thrust, with NVRTC at its core. In GitHub repository. GitHub. https:
//github.com/fynv/thrustrtc

Yang, F., Kollias, P., Shaw, R. A., & Vogelmann, A. M. (2018). Cloud droplet size distribution
broadening during diffusional growth: Ripening amplified by deactivation and reactivation.
Atmos. Chem. Phys. https://doi.org/10.5194/acp-18-7313-2018

Bartman et al. (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open
Source Software, 7(72), 3219. https://doi.org/10.21105/joss.03219.

8

https://doi.org/10.1038/s41467-019-12982-0
https://doi.org/10.1038/s41467-019-12982-0
https://doi.org/10.5194/gmd-13-1335-2020
https://doi.org/10.5194/gmd-13-1335-2020
https://doi.org/10.1175/JAS3980
https://doi.org/10.1029/2019MS001689
https://doi.org/10.1007/s10546-020-00595-w
https://doi.org/10.1007/s10546-020-00595-w
https://doi.org/10.5194/gmd-10-1817-2017
https://doi.org/10.1029/2018MS001285
https://doi.org/10.1002/qj.441
https://doi.org/10.1002/qj.1913
https://doi.org/10.1002/fld.1071
https://doi.org/10.21105/joss.00755
https://doi.org/10.21105/joss.00755
https://doi.org/10.5194/gmd-13-5119-2020
https://github.com/fynv/thrustrtc
https://github.com/fynv/thrustrtc
https://doi.org/10.5194/acp-18-7313-2018
https://doi.org/10.21105/joss.03219

	Introduction
	Dependencies and supported platforms
	API in brief
	Usage examples
	Box environment examples
	Adiabatic parcel examples
	Kinematic (prescribed-flow) examples

	Selected relevant recent open-source developments
	Summary
	Author contributions
	Acknowledgements
	References

