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Summary

Leveraging large-scale multi-omics data is emerging as the primary approach for systemic re-
search of human diseases and general biological processes. As data integration and feature
engineering are the vital steps in these bioinformatics projects, there currently lacks a tool
for standardized preprocessing of heterogeneous multi-omics and annotation data within the
context of a clinical cohort. OpenOmics is a Python library for integrating heterogeneous
multi-omics data and interfacing with popular public annotation databases, e.g., GENCODE,
Ensembl, BioGRID. The library is designed to be highly flexible to allow the user to parame-
terize the construction of integrated datasets, interactive to assist complex data exploratory
analyses, and scalable to facilitate working with large datasets on standard machines. In this
paper, we demonstrate the software design choices to support the wide-ranging use cases of
OpenOmics with the goal of maximizing usability and reproducibility of the data integration
framework.

Statement of need

Recent advances in sequencing technology and computational methods have enabled the
means to generate large-scale, high-throughput multi-omics data (Lappalainen et al., 2013),
providing unprecedented research opportunities for cancer and other diseases. These methods
have already been applied to a number of problems within bioinformatics, and indeed several
integrative disease studies (Hassan et al., 2020; Network & others, 2014; Ren et al., 2016;
Zhang et al., 2014). In addition to the genome-wide measurements of different genetic charac-
terizations, the growing public knowledge-base of functional annotations (Consortium, 2016;
Derrien et al., 2012), experimentally-verified interactions (Chou et al., 2015, 2017; Oughtred
et al., 2018; Yuan et al., 2013), and gene-disease associations (Chen et al., 2012; Huang et al.,
2018; Piñero et al., 2016) also provides the prior-knowledge essential for system-level analyses.
Leveraging these data sources allow for a systematic investigation of disease mechanisms at
multiple molecular and regulatory layers; however, such task remains nontrivial due to the
complexity of multi-omics data.
While researchers have developed several mature tools to access or analyze a particular single
omic data type (Stuart & Satija, 2019; Wolf et al., 2018), the current state of integrative
data platforms for multi-omics data is lacking due to three reasons. First, pipelines for data
integration carry out a sequential tasks that does not process multi-omics datasets holisti-
cally. Second, the vast size and heterogeneity of the data poses a challenge on the necessary
data storage and computational processing. And third, implementations of data pipelines are
close-ended for down-stream analysis or not conductive to data exploration use-cases. Addi-
tionally, there is currently a need for increased transparency in the process of multi-omics data
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integration, and a standardized data preprocessing strategy is important for the interpretation
and exchange of bioinformatic projects. Currently, there exist very few systems that, on the
one hand, supports standardized handling of multi-omics datasets but also allows to query the
integrated dataset within the context of a clinical cohort.

Related works

There are several existing platforms that aids in the integration of multi-omics data, such
as Galaxy, Anduril, MixOmics and O-Miner. First, Galaxy (Boekel et al., 2015) and Anduril
(Cervera et al., 2019) are mature platforms and has an established workflow framework for
genomic and transcriptomic data analysis. Galaxy contains hundreds of state-of-the-art tools
of these core domains for processing and assembling high-throughput sequencing data. Sec-
ond, MixOmics (Rohart et al., 2017) is an R library dedicated to the multivariate analysis of
biological data sets with a specific focus on data exploration, dimension reduction and visu-
alisation. Third, O-Miner (Sangaralingam et al., 2019) is web tool that provides a pipeline
for analysis of both transcriptomic and genomic data starting from raw image files through
in-depth bioinformatics analysis. However, as large-scale multi-omic data analysis demands
continue to grow, the technologies and data analysis needs continually change to adapt with
big data. For instance, the data manipulation required for multi-omics integration requires
a multitude of complex operations, but the point and click interface given in existing Galaxy
tools can be limiting or not computationally efficient. Although the MixOmics toolkit provides
an R programming interface, it doesn’t yet leverage high-performance distributed storage or
computing resources. Finally, while O-Miner can perform end-to-end analysis in an integrated
platform, its interim analysis results cannot be exported elsewhere for down-stream analysis.
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Figure 1: Overall OpenOmics System Architecture, Data Flow, and Use Cases.
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The OpenOmics library

OpenOmics consists of two core modules: multi-omics integration and annotation interface.
An overview visualization of the OpenOmics system architecture is provided in Figure 1.

Multi-omics integration

Tabular data are everywhere in bioinformatics. To record expression quantifications, annota-
tions, or variant calls, data are typically stored in various tabular-like formats, such as BED,
GTF, MAF, and VCF, which can be preprocessed and normalized to row indexed formats.
Given any processed single-omic dataset, the library generalizes the data as a tabular struc-
ture where rows correspond to observation samples and columns correspond to measurements
of different biomolecules. The core functionality of the Multi-omics Integration module is to
integrate the multiple single-omic datasets for the overlapping samples. By generating multi-
omics data for the same set of samples, our tool can provide the necessary data structure to
develop insights into the flow of biological information across multiple genome, epigenome,
transcriptome, proteome, metabolome and phenome levels. The user can import and integrate
the following supported omic types:

• Genomics: single nucleotide variants (SNV), copy number variation (CNV)
• Epigenomics: DNA methylation
• Transcriptomics: RNA-Seq, miRNA expression, lncRNA expression, microarrays
• Proteomics: reverse phase protein array (RPPA), iTRAQ

After importing each single omics data, OpenOmics stores a Pandas Dataframe (McKinney,
2010) that is flexible for a wide range of tabular operations. For instance, the user is presented
with several functions for preprocessing of the expression quantifications to normalize, filter
outliers, or reduce noise.
Within a study cohort, the clinical characteristics are crucial for the study of a disease or
biological phenomenon. The user can characterize the set of samples using the Clinical Data
structure, which is comprised of two levels: Patient and Biospecimen. A Patient can have
attribute fields on demographics, clinical diagnosis, disease progression, treatment responses,
and survival outcomes. Typically, multi-omics data observations are captured at the Biospec-
imen level and each Patient can have multiple Biospecimens. OpenOmics tracks the ID’s
of biospecimens and the patient it belongs to, so the multi-omics data are organized in a
hierarchical order to enable aggregated operations.

Annotation interface

After importing and integrating the multi-omic data, the user can supplement their dataset
with various annotation attributes from public data repositories such as GENCODE, Ensembl,
and RNA Central. With just a few operations, the user can easily download a data repository of
choice, select relevant attributes, and efficiently join a variable number of annotation columns
to their genomics, transcriptomics, and proteomics data. The full list of databases and the
availability of annotation attributes is listed in Table 1.
For each public database, the Annotation Interface module provides a series of interfaces to
perform specific importing, preprocessing, and annotation tasks. At the import step, the mod-
ule can either fetch the database files via a file-transfer-protocol (ftp) URL or load a locally
downloaded file. At this step, the user can specify the species, genome build, and version
of the database by providing a ftp URL of choice. To streamline this process, the module
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automatically caches downloaded file to disk, uncompress them, and handle different file ex-
tensions, including FASTA, GTF, VCF, and other tabular formats. Then, at the preprocessing
step, the module selects only the relevant attribute fields specified by the user and perform
necessary data cleanings. Finally, the annotation data can be annotated to an omics dataset
by performing a SQL-like join operation on a user-specified index of the biomolecule name or
ID. If the user wishes to import an annotation database not yet included in OpenOmics, they
can extend the Annotation Dataset API to specify their own importing, preprocessing, and
annotation tasks in an object-oriented manner.
An innovative feature of our integration module is the ability to cross-reference the gene ID’s
between different annotation systems or data sources. When importing a dataset, the user
can specify the level of genomic index, such as at the gene, transcript, protein, or peptide
level, and whether it is a gene name or gene ID. Since multiple single-omics datasets can use
different gene nomenclatures, the user is able to convert between the different gene indexing
methods by reindexing the annotation dataframe with a index column of choice. This not
only allows the Annotation Interface to select and join the annotation data to the correct
index level, but also allow the user to customize the selection and aggregation of biological
measurements at different levels.

Data Repository Annotation Data Available Index # entries
GENCODE Genomic annotations, primary sequence RNAs 60,660
Ensembl Genomic annotations Genes 232,186
MiRBase MicroRNA sequences and annotatinos MicroRNAs 38,589
RNA Central ncRNA sequence and annotation collection ncRNAs 14,784,981
NONCODE lncRNA sequences and annotations LncRNAs 173,112
lncrnadb lncRNA functional annotations LncRNAs 100
Pfam Protein family annotation Proteins 18,259
Rfam RNA family annotations ncRNAs 2,600
Gene Ontology Functional, cellular, and molecular annotations Genes 44,117
KEGG High-level functional pathways Genes 22,409
DisGeNet gene-disease associations Genes 1,134,942
HMDD microRNA-disease associations MicroRNAs 35,547
lncRNAdisease lncRNA-disease associations LncRNAs 3,000
OMIM Ontology of human diseases Diseases 25,670

Table 1: Public annotation databases and availability of data in the Human genome.

System design

This section describes the various implementation details behind the scalable processing and
efficient data storage, and the design choices in the development operations.
While the in-memory Pandas dataframes utilized in our data structures are fast, they have size
and speed limitations when the dataset size approaches the system memory limit. When this
is an issue, the user can enable out-of-memory distributed data processing on all OpenOmics
operations, implemented by the Dask framework (Rocklin, 2015). When memory resources
is limited, data in a Dask dataframe can be read directly from disk and is only brought into
memory when needed during computations (also called lazy evaluations). When performing
data query operations on Dask dataframes, a task graph containing each operation is built
and is only evaluated on command, in a process called lazy loading.
Operations on Dask dataframes are the same as Pandas dataframes, but can utilize multiple
workers and can scale up to clusters by connecting to a cluster client with minimal config-
uration. To enable this feature in OpenOmics, the user simply needs to explicitly enable an
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option when importing an omics dataset, importing an annotation/interaction database, or
importing a MultiOmics file structure on disk.

Software requirements

OpenOmics is distributed as a readily installable Python package from the Python Package
Index (PyPI) repository. For users to install OpenOmics in their own Python environment,
several software dependencies are automatically downloaded to reproduce the computing en-
vironment.
OpenOmics is compatible with Python 3.6 or higher, and is operational on both Linux and
Windows operating systems. The software requires as little as 4 GB of RAM and 2 CPU cores,
and can computationally scale up to large-memory multi-worker distributed systems such as a
compute cluster. To take advantage of increased computational resource, OpenOmics simply
requires one line of code to activate parallel computing functionalities.

Development operations

We developed OpenOmics following modern software best-practices and package publishing
standards. For the version control of our source-code, we utilized a public GitHub repository
which contains two branches, master and develop. The master branch contains stable and well-
tested releases of the package, while the develop branch is used for building new features or
software refactoring. Before each version is released, we utilize Github Actions for continuous
integration, building, and testing for version and dependency compatibility. Our automated
test suite covers essential functions of the package and a reasonable range of inputs and
conditions.

Conclusion

A standardized data preprocessing strategy is essential for the interpretation and exchange
of bioinformatics research. OpenOmics provides researchers with the means to consistently
describe the processing and analysis of their experimental datasets. It equips the user, a
bioinformatician, with the ability to preprocess, query, and analyze data with modern and
scalable software technology. As the wide array of tools and methods available in the public
domain are largely isolated, OpenOmics aims toward a uniform framework that can effectively
process and analyze multi-omics data in an end-to-end manner along with biologist-friendly
visualization and interpretation.
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