
DataLad: distributed system for joint management of
code, data, and their relationship
Yaroslav O. Halchenko∗1, Kyle Meyer1, Benjamin Poldrack2, Debanjum
Singh Solanky1, Adina S. Wagner2, Jason Gors1, Dave MacFarlane3,
Dorian Pustina4, Vanessa Sochat5, Satrajit S. Ghosh6, Christian
Mönch2, Christopher J. Markiewicz7, Laura Waite2, Ilya Shlyakhter8,
Alejandro de la Vega9, Soichi Hayashi10, Christian Olaf Häusler2, 11,
Jean-Baptiste Poline12, Tobias Kadelka2, Kusti Skytén13, Dorota
Jarecka6, David Kennedy14, Ted Strauss15, Matt Cieslak16, Peter
Vavra17, Horea-Ioan Ioanas18, Robin Schneider19, Mika Pflüger20,
James V. Haxby1, Simon B. Eickhoff2, 11, and Michael Hanke†2, 11

1 Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth
College, Hanover, NH, USA 2 Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7),
Research Center Jülich, Jülich, Germany 3 McGill Center for Integrative Neuroscience, Montreal,
Canada 4 CHDI Management/CHDI Foundation, Princeton, NJ, USA 5 Lawrence Livermore
National Lab, Livermore, CA, USA 6 Massachusetts Institute of Technology, Cambridge, MA, USA
7 Stanford University, Stanford, CA, USA 8 Quest Diagnostics, Marlborough, MA, USA 9 The
University of Austin at Austin, Austin, TX, USA 10 Indiana University, Bloomington, IN, USA 11
Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf,
Düsseldorf, Germany 12 Faculty of Medicine and Health Sciences, McConnell Brain Imaging Center,
McGill University, Montreal, Canada 13 University of Oslo, Oslo, Norway 14 University of
Massachusetts Medical School, Worcester, MA, USA 15 Montreal Neurological Institute, McGill
University, Montreal, Canada 16 University of Pennsylvania, Philadelphia, PA 17 Department of
Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany 18
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA 19
Independent Developer, Germany 20 Potsdam Institute for Climate Impact Research (PIK) e. V.,
Potsdam, Germany

DOI: 10.21105/joss.03262

Software
• Review
• Repository
• Archive

Editor: Ariel Rokem
Reviewers:

• @szorowi1
• @jkanche

Submitted: 03 May 2021
Published: 01 July 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

DataLad is a Python-based tool for the joint management of code, data, and their relationship,
built on top of a versatile system for data logistics (git-annex) and the most popular distributed
version control system (Git). It adapts principles of open-source software development and
distribution to address the technical challenges of data management, data sharing, and digital
provenance collection across the life cycle of digital objects. DataLad aims to make data
management as easy as managing code. It streamlines procedures to consume, publish, and
update data, for data of any size or type, and to link them as precisely versioned, lightweight
dependencies. DataLad helps to make science more reproducible and FAIR (Wilkinson et al.,
2016). It can capture complete and actionable process provenance of data transformations to
enable automatic re-computation. The DataLad project (datalad.org) delivers a completely
open, pioneering platform for flexible decentralized research data management (RDM) (Hanke,
Pestilli, et al., 2021). It features a Python and a command-line interface, an extensible
architecture, and does not depend on any centralized services but facilitates interoperability
with a plurality of existing tools and services. In order to maximize its utility and target

∗Contributed equally
†Contributed equally

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

1

https://doi.org/10.21105/joss.03262
https://github.com/openjournals/joss-reviews/issues/3262
https://github.com/datalad/datalad
https://doi.org/10.5281/zenodo.5034875
http://arokem.org/
https://github.com/szorowi1
https://github.com/jkanche
http://creativecommons.org/licenses/by/4.0/
https://git-annex.branchable.com
https://git-scm.com
http://datalad.org
https://doi.org/10.21105/joss.03262


audience, DataLad is available for all major operating systems, and can be integrated into
established workflows and environments with minimal friction.

Statement of Need

Code, data and computing environments are core components of scientific projects. While
the collaborative development and use of research software and code is streamlined with es-
tablished procedures and infrastructures, such as software distributions, distributed version
control systems, and social coding portals like GitHub, other components of scientific projects
are not as transparently managed or accessible. Data consumption is complicated by discon-
nected data portals that require a large variety of different data access and authentication
methods. Compared with code in software development, data tend not to be as precisely
identified because data versioning is rarely or only coarsely practiced. Scientific computation
is not reproducible enough, because data provenance, the information of how a digital file
came to be, is often incomplete and rarely automatically captured. Last but not least, in
the absence of standardized data packages, there is no uniform way to declare actionable
data dependencies and derivative relationships between inputs and outputs of a computa-
tion. DataLad aims to solve these issues by providing streamlined, transparent management
of code, data, computing environments, and their relationship. It provides targeted interfaces
and interoperability adapters to established scientific and commercial tools and services to
set up unobstructed, unified access to all elements of scientific projects. This unique set of
features enables workflows that are particularly suited for reproducible science, such as ac-
tionable process provenance capture for arbitrary command execution that affords automatic
re-execution. To this end, it builds on and extends two established tools for version control
and transport logistics, Git and git-annex.

Why Git and git-annex?

Git is the most popular version control system for software development1. It is a distributed
content management system, specifically tuned towards managing and collaborating on text
files, and excels at making all committed content reliably and efficiently available to all clones
of a repository. At the same time, Git is not designed to efficiently handle large (e.g., over
a gigabyte) or binary files (see, e.g., Kenlon, 2016). This makes it hard or impossible to
use Git directly for distributed data storage with tailored access to individual files. Git-
annex takes advantage of Git’s ability to efficiently manage textual information to overcome
this limitation. File content handled by git-annex is placed into a managed repository annex,
which avoids committing the file content directly to Git. Instead, git-annex commits a compact
reference, typically derived from the checksum of a file’s content, that enables identification
and association of a file name with the content. Using these identifiers, git-annex tracks
content availability across all repository clones and external resources such as URLs pointing
to individual files on the web. Upon user request, git-annex automatically manages data
transport to and from a local repository annex at a granularity of individual files. With this
simple approach, git-annex enables separate and optimized implementations for identification
and transport of arbitrarily large files, using an extensible set of protocols, while retaining the
distributed nature and compatibility with versatile workflows for versioning and collaboration
provided by Git.

1https://en.wikipedia.org/wiki/Git#Adoption

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

2

https://en.wikipedia.org/wiki/Git#Adoption
https://doi.org/10.21105/joss.03262


What does DataLad add to Git and git-annex?

Easy to use modularization. Research workflows impose additional demands for an effi-
cient research data management platform besides version control and data transport. Many
research datasets contain millions of files, but a large number of files precludes managing
such a dataset in a single Git repository, even if the total storage demand is not huge. Par-
titioning such datasets into smaller, linked components (e.g., one subdataset per sample in
a dataset comprising thousands) allows for scalable management. Research datasets and
projects can also be heterogeneous, comprising different data sources or evolving data across
different processing stages, and with different pace. Beyond scalability, modularization into
homogeneous components also enables efficient reuse of a selected subset of datasets and for
recording a derivative relationship between datasets. Git’s submodule mechanism provides a
way to nest individual repositories via unambiguously versioned linkage, but Git operations
must still be performed within each individual repository. To achieve modularity without im-
peding usability, DataLad simplifies working with the resulting hierarchies of Git repositories
via recursive operations across dataset boundaries. With this, DataLad provides a “mono-
repo”-like user experience in datasets with arbitrarily deep nesting, and makes it trivial to
operate on individual files deep in the hierarchy or entire trees of datasets. A testament of
this is datasets.datalad.org, created as the project’s initial goal to provide a data distribution
with unified access to already available public data archives in neuroscience, such as crcns.org
and openfmri.org. It is curated by the DataLad team and provides, at the time of publication,
streamlined access to over 260 TBs of data across over 5,000 subdatasets from a wide range
of projects and dozens of archives in a fully modularized way.
Re-executable annotation of changes. Digital provenance is crucial for the trustworthiness
and reproducibility of a research result, and contributes to the reusability aspect of the FAIR
principles (Wilkinson et al., 2016). Knowing which code and data were used is essential, but,
for changes that are programmatically introduced, how a command or script was invoked is
another key piece of information to capture. One approach is to include this information
in the Git commit message that accompanies a change, but doing so manually is tedious
and error prone. To solve this, DataLad supports executing a command and automatically
generating a commit message that includes a structured record with comprehensive details
on the invocation. In addition to providing reliable information about past command-line
invocations, these machine-readable records make it possible to easily re-execute commands
(e.g., to verify if a result is computationally reproducible or to apply an analog change to a
different dataset state).
Targeted interfaces and interoperability adapters. Interoperability with scientific or com-
mercial computing and storage services allows researchers to integrate data management
routines into their established workflows with minimal friction. Git can already interact with
other local or remote repositories via standard or custom network transport protocols. Data-
Lad implements support for additional services that require custom protocols, such as the
Open Science Framework (OSF) (Hanke, Poldrack, et al., 2021). Git-annex readily provides
access to a wide range of external data storage resources via a large set of protocols. DataLad
builds on this support and adds, for example, more fine-grained access (e.g. direct access to
individual components contained in an archive hosted on cloud storage) or specialized services,
such as XNAT (www.xnat.org). Efficient and seamless access to scientific data is implemented
using the special remote protocol provided by git-annex (Hess, 2013), through which external
tools, like DataLad, can provide custom transport functionality transparently to a user. With
this approach, DataLad and other projects can jointly facilitate access to an ever-growing col-
lection of resources (Hess, 2011) and overcome technological limitations of storage solutions,
like file size or inode limits.
Metadata management. Metadata are essential for scientific discovery, as they are routinely
used to complete all data analyses. Metadata is the core concept behind Git and git-annex
functioning: Git records and uses metadata about each change (author, date, description,

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

3

http://datasets.datalad.org
http://crcns.org
http://openfmri.org
http://www.xnat.org
https://doi.org/10.21105/joss.03262


original state, etc) for each commit. Git-annex manages metadata about content availability
and allows to associate additional arbitrary key-value pairs to any annexed content. Files
managed by git and git-annex can in turn be of standardized file formats comprised of data
with rich metadata records. Moreover, entire repositories might conform to a standard (e.g.,
BIDS (Gorgolewski et al., 2016)) or provide a standardized dataset descriptor (e.g., Frictionless
data package). To facilitate metadata availability and utility, DataLad provides an extensible
framework for metadata extraction and aggregation. Metadata for each file (contained in the
file or recorded by git and git-annex) or associated with the entire dataset can be extracted
into a collection of machine-readable (JSON) records and aggregated across all contained sub-
datasets. Such simple mechanism makes it possible to provide immediate access to metadata
about all contained data within a larger super-dataset (such as datasets.datalad.org).

Overview of DataLad and its ecosystem

Design principles

Besides the free software nature and open processes of the DataLad project, the development
of DataLad is guided by four principles to ensure its open and domain agnostic nature, to
maximize the long-term utility of its datasets and to minimize users’ technical debt:

• Datasets and the files they comprise are the only two recognized entities
• A dataset is a Git repository with an optional annex
• Minimization of custom procedures and data structures
• Complete decentralization, with no required central server or service, but maximum

interoperability with existing 3rd-party resources and infrastructure

In conjunction, these principles aim to reduce the risk of adoption for DataLad users. They
foster the resilience of an ecosystem using DataLad datasets as a standard package format
for any digital objects by avoiding any critical dependency on service deployments governed
by central entities, and even on DataLad itself, for access to any resources managed with
DataLad.

DataLad core

The datalad Python package provides both a Python library and a command line tool which
expose core DataLad functionality to fulfill a wide range of decentralized RDM use cases for
any domain. All DataLad commands operate on DataLad datasets. On a technical level, these
datasets are Git repositories with additional metadata. On a conceptual level, they constitute
an overlay structure that allows to version control files of any size, track and publish files in
a distributed fashion, and record, publish, and execute actionable provenance of files and file
transformations. Figure 1 summarizes key commands and concepts for local or distributed
data and provenance management.

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

4

https://frictionlessdata.io/data-package/
https://frictionlessdata.io/data-package/
http://datasets.datalad.org
https://doi.org/10.21105/joss.03262


Figure 1: Schematic overview of a dataset, datasets nesting, and selected commands for content
and dataset management. A more comprehensive cheatsheet is provided in the DataLad handbook
(Wagner, 2020).

DataLad’s features can be flexibly integrated into standard scientific workflows. For example,
by using the concept of dataset nesting to modularize the evolution of a research project,
DataLad can fulfill the YODA principles for reproducible science (YODA Team, 2021), and,
with this simple paradigm, facilitate efficient access, composition, scalability, reuse, sharing,
and reproducibility of results (see Figure 2). With core commands that aim to simplify oper-
ation of the underlying tools, DataLad makes RDM workflows more accessible to novices and
experts alike. Importantly, compatibility with all Git/git-annex functionality is retained.

Figure 2: DataLad datasets are reusable modular components, which can be nested to establish a
complete provenance trail all the way from a publication to the original data. Various access schemes
to datasets and data are provided, and further extensibility is a key architectural property.

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

5

https://doi.org/10.21105/joss.03262


Extensions

Like Git and git-annex, DataLad core is a generic tool that is not specifically tuned to particular
data types or use cases. It offers a robust foundation to build more specialized solutions on top
of. DataLad extensions, stand-alone Python packages with additional DataLad functionality,
extend DataLad with domain-focused or technology-specific features. A dedicated datalad-
extension-template repository provides a starting point for creating new DataLad extensions.
Some established extensions include:

• datalad-container (Meyer et al., 2021) to simplify management and use of Docker and
Singularity containers typically containing complete computational environments

• datalad-crawler (Halchenko et al., 2021) to automate creation and updates of DataLad
datasets from external resources

• datalad-neuroimaging (Hanke et al., 2020) to provide neuroimaging-specific procedures
and metadata extractors

• datalad-osf (Hanke, Poldrack, et al., 2021) to collaborate using DataLad through the
Open Science Framework (OSF)

• datalad-ukbiobank (Hanke, Waite, et al., 2021) obtain and BIDS-normalize imaging
data releases of the UKBiobank

The same mechanism of extensions is used for rapid development of new functionality to
later be moved into the core tool (e.g., datalad-metalad). The datalad-extensions repository
provides a list of extensions and continuous integration testing of their released versions against
released and development versions of the DataLad core.

External uses and integrations

DataLad can be used as an independent tool to access and manage data (see e.g. Wittkuhn
& Schuck (2021), Gautheron et al. (2021), Gautheron (2021)) or as a core technology behind
another tool or a larger platform (e.g. Far et al. (2021)). TemplateFlow (Ciric et al., 2021)
uses DataLad for the management of neuroimaging templates. OpenNeuro uses DataLad for
data logistics with data deposition to a public S3 bucket. CONP-PCNO adopts aforementioned
features for modular composition and nesting to deliver a rich collection of datasets with public
or restricted access to data. ReproMan integrates with DataLad to provide version control and
data logistics. www.datalad.org/integrations.html provides a more complete list of DataLad
usage and integration with other projects, and Hanke, Pestilli, et al. (2021) provides a
systematic depiction of DataLad as a system for decentralized RDM used by a number of
projects.

Documentation

Developer-focused technical documentation at docs.datalad.org, with detailed descriptions
of the command line and Python interfaces, is automatically generated from the DataLad
core repository. A comprehensive handbook (Wagner et al., 2021a) provides user-oriented
documentation with an introduction to research data management, and numerous use case
descriptions for novice and advanced users of all backgrounds (Wagner et al., 2021b).

Installation

The handbook provides installation instructions for all major operating systems. DataLad
releases are distributed through PyPI, Debian, NeuroDebian, brew, and conda-forge. The

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

6

https://github.com/datalad/datalad-extension-template
https://github.com/datalad/datalad-extension-template
https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-crawler
https://github.com/datalad/datalad-neuroimaging
https://github.com/datalad/datalad-osf/
https://github.com/datalad/datalad-ukbiobank/
https://github.com/datalad/datalad-metalad/
https://github.com/datalad/datalad-extensions/
http://templateflow.github.io/
http://openneuro.org
https://github.com/CONP-PCNO/
http://reproman.repronim.org
https://www.datalad.org/integrations.html
http://docs.datalad.org
http://handbook.datalad.org
http://handbook.datalad.org/r.html?install
https://pypi.org/project/datalad
https://tracker.debian.org/pkg/datalad
http://neuro.debian.net/pkgs/datalad.html
https://formulae.brew.sh/formula/datalad
https://anaconda.org/conda-forge/datalad
https://doi.org/10.21105/joss.03262


datalad-installer (also available from PyPI) streamlines the installation of DataLad and its de-
pendencies, in particular git-annex, across a range of deployment scenarios, such as continuous
integration systems, or high-performance computing (HPC) environments.

Development

DataLad has been developed openly in a public repository (github.com/datalad/datalad) since
its inception in 2013. At the time of this publication, the repository amassed over 13.5k com-
mits, 2.5k merged PRs, and 2.3k closed (+700 open) issues from over 30 contributors. Issue
tracker, labels, milestones, and pull requests are used to coordinate development. The devel-
opment process of DataLad is not isolated from its foundational building blocks. For every
new feature or bug fix the most appropriate software layer is determined to maximize the size
of the benefitting user base and, importantly, also the associated developer audience. This
strategy aims to achieve a robust integration with the larger open source software ecosystem,
and simultaneously minimize the total technical debt carried solely by the DataLad develop-
ment team. Consequently, DataLad development is tightly connected to and involves frequent
communication with the git-annex project and its main developer Joey Hess (Hess & DataLad
Team, 2016). To guarantee robust operation across various deployments, DataLad heavily uti-
lizes continuous integration platforms (Appveyor, GitHub actions, and Travis CI) for testing
DataLad core, building and testing git-annex (in a dedicated github.com/datalad/git-annex),
and integration testing with DataLad extensions (datalad-extensions).

Contributions

DataLad is free and open source software and encourages unconstrained use and reuse in any
context. Therefore, DataLad is released under DFSG- and OSI-compliant MIT/Expat license.
License terms for reused components in the code-base are provided in the COPYING file.
The project aims to promote contributions rather than detached developments in forks and
anyone is highly welcome to contribute to DataLad in any form under these terms. Technical
and procedural guidelines for such contributions can be found in the CONTRIBUTING.md
file shipped within DataLad’s source repository. Contributors are acknowledged on the project
website, and also credited in the form of co-authorship in the Zenodo-based archival of software
releases. All co-authors of this paper as well as the contributors acknowledged below have
added to the project with code- or non-code-based contributions, and we thank past, present,
and future contributors of this community for their involvement and work.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We express our gratitude to Joey Hess for the development and maintenance of git-annex,
and for years of productive collaboration with the DataLad team. We would like to extend
our gratitude to Joey Zhou, Matteo Visconti di Oleggio Castello, John T. Wodder II, Satya
Ortiz-Gagné, Jörg Stadler, Andrew Connolly, John Lee, Nolan Nichols, Elizabeth DuPre,
Cécile Madjar, Gergana Alteva, Timo Dickscheid, Alex Waite for notable contributions to the
codebase, bug reports, recommendations, and promotion of DataLad.
DataLad development was made possible thanks to support by NSF 1429999, 1912266 (PI:
Halchenko) and BMBF 01GQ1411, 01GQ1905 (PI: Hanke) through the CRCNS program.

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

7

https://github.com/datalad/datalad-installer
https://github.com/datalad/datalad
https://github.com/datalad/git-annex
https://github.com/datalad/datalad-extensions/
https://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
https://opensource.org/osd
https://github.com/datalad/datalad/blob/master/COPYING
https://github.com/datalad/datalad/blob/master/CONTRIBUTING.md
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1912266
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5147
https://doi.org/10.21105/joss.03262


It received significant contributions from ReproNim 1P41EB019936-01A1 (PI: Kennedy) and
DANDI 5R24MH117295-02 (PIs: Ghosh, Halchenko) NIH projects. It also received contri-
butions from the Canadian Open Neuroscience Platform and the NeuroHub (Co-PI: Poline)
projects thanks in part to funding from a Brain Canada Platform Support Grant Competition
Award in addition to funds and in-kind support from sponsor organizations, and from the
Canada First Research Excellence Fund, awarded through the Healthy Brains, Healthy Lives
initiative at McGill University, and the Brain Canada Foundation with support from Health
Canada. This development was supported by the European Regional Development Fund
(Project: Center for Behavioral Brain Sciences Magdeburg, Imaging Platform, PI: Hanke), the
European Union’s Horizon 2020 research and innovation programme under grant agreements
Human Brain Project (SGA3, H2020-EU.3.1.5.3, grant no. 945539; Co-Investigators: Eick-
hoff, Hanke), and Virtual Brain Cloud (H2020-EU.3.1.5.3, grant no. 826421; PI: Eickhoff),
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grants SFB
1451 (431549029; Co-PIs: Eickhoff, Hanke) and IRTG 2150 (269953372; Co-PIs: Eickhoff,
Hanke).

References

Ciric, R., Lorenz, R., Thompson, W., Goncalves, M., MacNicol, E., Markiewicz, C., Halchenko,
Y., Ghosh, S., Gorgolewski, K., Poldrack, R., & Esteban, O. (2021). TemplateFlow: A
community archive of imaging templates and atlases for improved consistency in neu-
roimaging. https://doi.org/10.21203/rs.3.rs-264855/v1

Far, M. S., Stolz, M., Fischer, J. M., Eickhoff, S. B., & Dukart, J. (2021). JTrack: A digital
biomarker platform for remote monitoring in neuropsychiatric and psychiatric diseases.
CoRR, abs/2101.10091. https://arxiv.org/abs/2101.10091

Gautheron, L. (2021). The LAAC superdataset: Datasets of infant day-long recordings.
https://github.com/LAAC-LSCP/datasets

Gautheron, L., Rochat, N., & Cristia, A. (2021). Managing, storing, and sharing long-form
recordings and their annotations. https://doi.org/10.31234/osf.io/w8trm

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G.,
Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li,
X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., … Poldrack, R. A.
(2016). The brain imaging data structure, a format for organizing and describing outputs of
neuroimaging experiments. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.44

Halchenko, Y., Hanke, M., Meyer, K., Olson, T., Chaselgrove, & Poldrack, B. (2021). datalad-
crawler: DataLad extension for crawling external resources. Zenodo. https://doi.org/10.
5281/ZENODO.2558512

Hanke, M., Halchenko, Y., Poldrack, B., & Meyer, K. (2020). datalad-neuroimaging: DataLad
extension for neuroimaging. Zenodo. https://doi.org/10.5281/ZENODO.3874225

Hanke, M., Pestilli, F., Wagner, A. S., Markiewicz, C. J., Poline, J.-B., & Halchenko, Y.
O. (2021). In defense of decentralized research data management. Neuroforum, 27(1).
https://doi.org/10.1515/nf-2020-0037

Hanke, M., Poldrack, B., Wagner, A. S., Huijser, D., Sahoo, A. K., Boos, M., Steinkamp, S.
R., Guenther, N., & Appelhoff, S. (2021). datalad-osf: DataLad extension for integration
with OSF.io. Zenodo. https://doi.org/10.5281/ZENODO.3900277

Hanke, M., Waite, L. K., Poline, J.-B., & Hutton, A. (2021). DataLad extension for working
with the UKbiobank (Version 0.3.3) [Computer software]. Zenodo. https://doi.org/10.
5281/zenodo.4773629

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

8

https://projectreporter.nih.gov/project_info_details.cfm?aid=8999833&map=y
https://projectreporter.nih.gov/project_info_description.cfm?aid=9981835&icde=53349087
https://cordis.europa.eu/project/id/945539
https://cordis.europa.eu/project/id/945539
https://cordis.europa.eu/project/id/826421
https://gepris.dfg.de/gepris/projekt/431549029
https://gepris.dfg.de/gepris/projekt/431549029
https://gepris.dfg.de/gepris/projekt/269953372
https://gepris.dfg.de/gepris/projekt/269953372
https://doi.org/10.21203/rs.3.rs-264855/v1
https://arxiv.org/abs/2101.10091
https://github.com/LAAC-LSCP/datasets
https://doi.org/10.31234/osf.io/w8trm
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.5281/ZENODO.2558512
https://doi.org/10.5281/ZENODO.2558512
https://doi.org/10.5281/ZENODO.3874225
https://doi.org/10.1515/nf-2020-0037
https://doi.org/10.5281/ZENODO.3900277
https://doi.org/10.5281/zenodo.4773629
https://doi.org/10.5281/zenodo.4773629
https://doi.org/10.21105/joss.03262


Hess, J. (2011). Git-annex: Special remotes. https://git-annex.branchable.com/special_
remotes/

Hess, J. (2013). Git-annex: External special remote protocol. https://git-annex.branchable.
com/design/external_special_remote_protocol/

Hess, J., & DataLad Team. (2016). Git-annex: DataLad project - bug and todo report.
https://git-annex.branchable.com/projects/datalad

Kenlon, S. (2016). How to manage binary blobs with git. https://opensource.com/life/16/
8/how-manage-binary-blobs-git-part-7

Meyer, K., Hanke, M., Halchenko, Y., Poldrack, B., & Wagner, A. (2021). datalad-container:
DataLad extension for working with computational containers. Zenodo. https://doi.org/
10.5281/ZENODO.2431914

Wagner, A. S. (2020). The DataLad Handbook: Cheatsheet. http://handbook.datalad.org/
r.html?cheatsheet

Wagner, A. S., Waite, L. K., Meyer, K., Heckner, M. K., Kadelka, T., Reuter, N., Waite,
A. Q., Poldrack, B., Markiewicz, C. J., Halchenko, Y. O., Vavra, P., Chormai, P., Poline,
J.-B., Paas, L. K., Herholz, P., Mochalski, L. N., Kraljevic, N., Wiersch, L., Hutton,
A., … Hanke, M. (2021a). The DataLad Handbook. Zenodo. https://doi.org/10.5281/
ZENODO.4495560

Wagner, A. S., Waite, L. K., Meyer, K., Heckner, M. K., Kadelka, T., Reuter, N., Waite,
A. Q., Poldrack, B., Markiewicz, C. J., Halchenko, Y. O., Vavra, P., Chormai, P., Poline,
J.-B., Paas, L. K., Herholz, P., Mochalski, L. N., Kraljevic, N., Wiersch, L., Hutton, A., …
Hanke, M. (2021b). The DataLad Handbook: Use Cases. http://handbook.datalad.org/
usecases/intro.html

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne, P. E., Bouwman, J., Brookes,
A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers,
R., … Mons, B. (2016). The FAIR guiding principles for scientific data management and
stewardship. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.18

Wittkuhn, L., & Schuck, N. W. (2021). Dynamics of fMRI patterns reflect sub-second activa-
tion sequences and reveal replay in human visual cortex. Nature Communications, 12(1).
https://doi.org/10.1038/s41467-021-21970-2

YODA Team. (2021). YODA: README. https://github.com/myyoda/myyoda

Halchenko et al., (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source
Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

9

https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/design/external_special_remote_protocol/
https://git-annex.branchable.com/design/external_special_remote_protocol/
https://git-annex.branchable.com/projects/datalad
https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7
https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7
https://doi.org/10.5281/ZENODO.2431914
https://doi.org/10.5281/ZENODO.2431914
http://handbook.datalad.org/r.html?cheatsheet
http://handbook.datalad.org/r.html?cheatsheet
https://doi.org/10.5281/ZENODO.4495560
https://doi.org/10.5281/ZENODO.4495560
http://handbook.datalad.org/usecases/intro.html
http://handbook.datalad.org/usecases/intro.html
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41467-021-21970-2
https://github.com/myyoda/myyoda
https://doi.org/10.21105/joss.03262

	Summary
	Statement of Need
	Why Git and git-annex?
	What does DataLad add to Git and git-annex?

	Overview of DataLad and its ecosystem
	Design principles
	DataLad core
	Extensions
	External uses and integrations
	Documentation
	Installation
	Development
	Contributions

	Conflicts of interest
	Acknowledgements
	References

