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Summary

Large-scale, high-throughput computational investigations are increasingly common in chem-
istry and physics. Until recently, computational chemistry was primarily performed using
all-in-one monolithic software packages (Aprà et al., 2020; Aquilante et al., 2020; Barca et
al., 2020; Kühne et al., 2020; Romero et al., 2020; Smith et al., 2020). However, the limits of
individual programs become evident when tackling complex multifaceted problems. As such, it
is increasingly common to use multiple disparate software packages in a single computational
pipeline, often stitched together using shell scripts in languages such as Bash, or using Python
and other interpreted languages.
These complex computational pipelines are difficult to scale and automate, as they often
include manual steps and significant “human-in-the-loop” tuning. Shell scripting errors are
often undetected, which can compromise scientific results. Conversely, exception-based error
handling, the standard approach in Python, can readily bring a computational workflow to a
halt when exceptions are not properly caught (Weimer & Necula, 2008).
funsies is a set of Python programs and modules to describe, execute and analyze com-
putational workflows, with first-class support for shell scripting. It includes a lightweight,
decentralized workflow engine backed by a NoSQL store. Using funsies, external programs
and Python-based computations are easily mixed together. Errors are detected and propa-
gated throughout computations. Automatic, transparent incremental computing (based on
a hash tree data structure) provides a convenient environment for iterative prototyping of
computationally expensive workflows.

Statement of need

Modern workflow management programs used in the private sector, such as Apache Airflow
and Uber’s Cadence, are robust and extremely scalable, but are difficult to deploy. Scientific
workflow management systems, many of which are compiled in (Tommaso, 2021) and system-
atically reviewed in (Mölder et al., 2021), are easier to set up on high-performance computing
clusters, but are tuned to the needs of specific disciplines, such as bioinformatics or machine
learning. This includes, for example, the use of configuration file formats (YAML, JSON,
etc.), packaging tools (for example, conda or Docker), locked-in compute providers (Amazon
Web Services, Google Cloud) and storage formats that may be common in specific scientific
fields but not throughout the greater community.
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For our own group’s research program, we wanted to have available a lightweight workflow
management system that could be readily deployed to new and varied computational facilities
and local workstations with minimal effort. This system had to support our existing shell-
based and Python-based scripts, and be flexible enough for rapid prototyping all the way to
large-scale computational campaigns, and provide an embeddable solution that can be bundled
within other software (Lavigne et al., 2020). Finally, we were looking for a tool that could
integrate data generation and storage, to avoid the common practice of transforming the
filesystem into what is effectively a schema-less database. We developed funsies to address
those needs.

Features and Implementation

funsies is a Python library and a set of associated command-line tools. Using the funs
ies library, general computational workflows are described in lazily evaluated Python code.
Operations in funsies are taken to be pure, that is, all operation outputs are entirely and
solely determined by their inputs. Workflows are orchestrated using Python by manipulating
pointers to yet-to-be-calculated data. Workflow instructions are transparently translated and
saved as graph elements in a Redis database.
Computational evaluation is initiated by the user asking for specific output value. The task
graph from these final outputs is walked back all the way to those operations with no de-
pendencies. These initial operations are then queued for execution. Lightweight worker pro-
cesses, instantiated from the command line on local or remote machines, connect to the Redis
database and start executing the workflow. For each operation, the worker checks if outputs
are already cached, and if not, executes the associated function and saves its outputs. It then
enqueues any dependents for execution, by itself or by other workers. In this way, the entire
computational graph is evaluated in a distributed, decentralized fashion without any scheduler
or manager program. Errors in workflows are handled using a functional approach inspired
by Rust (Klabnik & Nichols, 2019). Specifically, exceptions are propagated through workflow
steps, canceling dependent tasks, without interrupting valid workflow branches. This provides
both easy error tracing and a high degree of fault tolerance.
The main distinguishing feature of funsies is the hash tree structure that is used to encode
all operations and their inputs. The causal hashing approach used in funsies can also be
found in Snakemake (Mölder et al., 2021) as an optional component and the (now defunct)
Koji workflow system (Maymounkov, 2018), as part of the Nix package manager (Dolstra et
al., 2004) and in the Git version control system (Chacon & Straub, 2014). In funsies, we
replace all filesystem operations with hash addressed operations; that is all I/O operations
and dependencies are tracked.
Every operation has a hash address that is computed from the hash values of its dependencies
and a hashed identifier for the associated operation on data. In this way, the consistency of
data dependencies is strongly enforced. Changes to data and operations are automatically
and transparently propagated, as changing a single dependency will cause a rehash of all
its dependents, effectively producing a new workflow with no associated data that needs to
be recomputed. Alternatively, if data already exists at a specific hash address, then it was
generated from the same operations that produced that hash. In this way, the hash tree
structure enables transparent and automatic incremental recomputing.
Using hash addresses also enables decentralization, as we can rely on the unlikeliness of hash
collisions (Stevens et al., 2017) to eliminate centralized locks. An important advantage of
this approach is that it allows worker processes to generate their own workflows of tasks
dynamically. Results from these dynamic workflows can be collected and used further in the
workflow description, provided they can be reduced to a number of outputs known at compile
time, a technique similar to MapReduce (Dean & Ghemawat, 2004).
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As of now, we have published one project (Pollice et al., 2021) that used an earlier iteration of f
unsies, and are using it in multiple ongoing inquiries. We provide several sample workflows on
GitHub, with a focus on computational chemistry, quantum computing, and high-performance
computing infrastructure.
We intend to maintain funsies and of course welcome collaborations from contributors
around the world.
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