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Summary

Renewable energy sources are likely to build the backbone of the future global energy system.
One important key to a successful energy transition is to analyse the weather-dependent en-
ergy outputs of existing and eligible renewable resources. atlite is an open Python software
package for retrieving global historical weather data and converting it to power generation
potentials and time series for renewable energy technologies like wind turbines or solar photo-
voltaic panels based on detailed mathematical models. It further provides weather-dependent
output on the demand side like building heating demand and heat pump performance. The
software is optimized to aggregate data over multiple large regions with user-defined weight-
ings based on land use or energy yield.

Statement of need

Deriving weather-based time series and maximum capacity potentials for renewables over large
regions is a common problem in energy system modelling. Websites with exposed open APIs
such as renewables.ninja (Pfenninger & Staffell, 2016; Staffell & Pfenninger, 2016) exist for
such purpose but are difficult to use for local execution, e.g. in cluster environments, and re-
stricted to non-commercial use. Further, by design, they neither expose the underlying datasets
nor methods for deriving time series, here referred to as conversion functions/methods. This
makes them unsuited for utilizing different weather datasets or exploring alternative conversion
functions. The pvlib (Holmgren et al., 2018) is suited for local execution and allows inter-
changeable input data but is specialized to PV systems only and intended for single location
modelling. Other packages like the Danish REatlas (Andresen et al., 2015) face obstacles
with accessibility, are based on proprietary code, miss documentation and are restricted in
flexibility regarding their inputs.
The purpose of atlite is to fill this gap and provide an open, community-driven library.
atlite was initially built as a lightweight alternative to REatlas and has evolved further to
contain multiple additional features. atlite is designed with extensibility in mind for new
renewable technologies and conversion methods. An abstraction layer for weather datasets
enables interchangability of the underlying datasets. By leveraging the Python packages
xarray (Hoyer & Hamman, 2017), dask (Dask Development Team, 2016) and rasterio (Gillies
& others, 2021), atlite makes use of parallelization and memory efficient backends thus
performing well even on large datasets.
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Basic Concept

The starting point of most atlite functionalities is the atlite.Cutout class. It serves as a
container for a spatio-temporal subset of one or more topology and weather datasets. Since
such datasets are typically global and span multiple decades, the Cutout class allows atlite
to reduce the scope to a more manageable size. As illustrated in Figure 1, a typical workflow
consists of three steps: Cutout creation, Cutout preparation and Cutout conversion.

Figure 1: A typical workflow in atlite consists of the three steps: 1. Cutout creation, 2. Preparation,
3. Conversion.

Cutout Creation and Preparation

The Cutout creation requires specifications of the geographical and temporal bounds, the
path of the associated netcdf file to be created and the data source referred to as module.
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Optionally, the temporal and spatial resolution may be adjusted. The default is set to 1 hour
and 0.25◦ latitude times 0.25◦ longitude. So far, atlite supports three different modules:

1. ECMWF Reanalysis v5 (ERA5) provides various weather-related variables in an hourly
resolution from 1950 onward on a spatial grid with a 0.25◦ x 0.25◦ resolution, most of
which is reanalysis data. atlite automatically retrieves the raw data using the Climate
Data Store (CDS) API after the initial set up by the user. When the requested data
points diverge from the original grid, the API retrieves interpolated values based on the
original grid data.

2. Heliosat (SARAH-2) provides satellite-based solar data in a 30 min resolution from 1983
to 2015 on a spatial grid ranging from -65◦ to +65◦ longitude/latitude with a resolution
of 0.05◦ x 0.05◦. In case of a diverging Cutout grid, a resampling function provided
by atlite projects the data accordingly. The full dataset cannot be automatically
retrieved and must be downloaded by the user beforehand.

3. GEBCO is a bathymetric dataset covering terrain heights on a 15 arc-second resolved
spatial grid. Using an averaging resampling method, the data is projected to the Cutout
resolution. The full dataset cannot be automatically retrieved and must be downloaded
by the user beforehand.

Creating a Cutout triggers the program to initialize the grid cells and the coordinate system
on which the data will lay. As indicated in Figure 1, the shapes of the grid cells are created
such that their coordinates are centered in the middle. As soon as the Cutout preparation is
executed, atlite retrieves/loads data variables, adds them to the Cutout and finally stores
the Cutout in a netcdf file. atlite groups weather variables into features, which can be
used as front-end keys for preparing a subset of the available weather variables. The following
table shows the variable groups for all datasets.

feature ERA5 variables SARAH-2 variables GEBCO variables
height height height
wind wnd100m, roughness
influx influx_toa, influx_direct,

influx_diffuse, albedo
influx_direct,
influx_diffuse

temperature temperature, soil_temperature
runoff runoff

A Cutout may combine features from different sources, e.g. ‘height’ from GEBCO and ‘runoff’
from ERA5. Future versions of atlite will likely introduce the possibility to retrieve explicit
weather variables from the CDS API. Further, the climate projection dataset CORDEX, for
which support was dropped with the latest release v0.2 due to compatibility issues, is likely
to be reintroduced.

Conversion Functions

atlite currently offers conversion functions for deriving time series and static potentials from
Cutouts for the following types of renewables:

• Solar photovoltaic – Two alternative solar panel models are provided based on Huld et
al. (2010) and Beyer et al. (2004), both of which use the clear sky model from Reindl et
al. (1990) and a solar azimuth and altitude position tracking based on Kalogirou (2009),
Michalsky (1988) and Sproul (2007) combined with a surface orientation algorithm
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following Sproul (2007). Optionally, optimal latitude heuristics from Landau (2017) are
supported.

• Solar thermal collector – Low-temperature heat for space or district heating is imple-
mented based on the formulation in Henning & Palzer (2014), which combines average
global radiation with storage losses dependent on the current outside temperature.

• Wind turbine – The wind turbine power output is calculated from down-scaled wind
speeds at hub height using either a custom power curve, one of 16 predefined wind
turbine configurations, or any of those listed in the OEP Wind Turbine Library. Option-
ally, convolution with a Gaussian kernel for region-specific calibration given real-world
reference data as presented by Andresen et al. (2015) is supported.

• Hydro run-off power – A heuristic approach uses surface run-off weather data
(e.g. from rainfall or melting snow) which is normalized to match reported energy
production figures by the EIA. The resulting time series are optionally weighted by the
height of the run-off location and may be smoothed for a more realistic representation.

• Hydro reservoir and dam power – Following Liu et al. (2019) and Lehner & Grill
(2013), run-off data is aggregated to and collected in basins which are obtained and
estimated in their size with the help of the HydroSHEDS dataset.

• Heating demand – Space heating demand is obtained with a simple degree-day approx-
imation where the difference between outside ground-level temperature and a reference
temperature scaled by a linear factor yields the desired estimate.

The conversion functions are highly flexible and allow the user to calculate different types
of outputs, which arise from the set of input arguments. In energy system models, network
nodes are often associated with geographical regions which serve as catchment areas for
electric loads, renewable energy potentials and more. As indicated in the third step of Figure
1, atlite’s conversion functions allow projecting renewable time series on a set of regions.
Therefore, atlite internally computes the Indicator Matrix I with values Ir,x,y representing
the per-unit overlap between region r and the grid cell at (x, y). Then, the resulting time
series φr(t) for region r is given by

φr(t) =
∑
x,y

Ir,x,y φx,y(t),

where φx,y(t) is the converted time series of grid cell (x, y). Further, the user may define
custom weightings λx,y of the grid cells, referred to as layout, representing, for instance, the
spatial distribution of installed capacities within a region, which modifies the above equation
to

φr(t) =
∑
x,y

Ir,x,y λx,y φx,y(t).

The conversion functions may optionally return the per-unit time series φ̃r(t) = φr(t)/cr
where cr is the installed capacity per region given by

cr =
∑
x,y

Ir,x,y λx,y,

which may be returned as an output as well.
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Land-Use Restrictions

Land-use restrictions limit the deployment of renewables infrastructure. Wind turbines, for
example, may only be placed in eligible places which have to fulfill general and country-specific
requirements, e.g. being outside of protected areas or at a sufficient distance to residential
areas.
atlite provides a performant, parallelized implementation to calculate land-use availabilities
within all grid cells of a Cutout. As illustrated in Figure 2, the entries Ar,x,y of an Availability
Matrix A indicate the overlap of the eligible area of region r with grid cell at (x, y). Note
that this is analogous to the Indicator Matrix I but with reduced area. The user can exclude
geometric shapes or geographic rasters of arbitrary projection, like specific codes of the Corine
Land Cover (CLC) database. To determine capacity expansion potentials per region, atlite
does not use an explicit placement algorithm (e.g. for wind turbines), but the product of
available area and allowed deployment density. The implementation is inspired by the GLAES
(Ryberg et al., 2018) software package, which itself is no longer maintained and incompatible
with newer versions of the underlying GDAL software.

Figure 2: Example of a land-use restrictions calculated with atlite. The left side shows a highly-
resolved raster with available areas in green. In this example all urban and forest-like sites are
excluded areas, drawn in white. The right side visualizes exemplary entries per region r of the
resulting Availability Matrix A.

Related Research

atlite is used by several research projects and groups. The PyPSA-Eur workflow (Hörsch
et al., 2018) is an open model dataset of the European power system which exploits the
full potential of atlite including Cutout preparation and conversion to wind, solar and
hydro reservoir time series with restricted land-use availabilities. The sector-coupled extension
PyPSA-Eur-sec (Brown et al., 2018) calculates heat-demand profiles as well as heat pump
coefficients with atlite. The Euro Calliope studied in Tröndle et al. (2020) uses atlite to
generate hydroelectricity time series from reservoirs. The interactive tool model.energy also
employs the atlite libary.
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Availability

Stable versions of the atlite package are available for Linux, MacOS and Windows via
pip in the Python Package Index (PyPI) and for conda on conda-forge. Upstream versions
and development branches are available in the projects GitHub repository. Documentation
including examples are available on Read the Docs. The atlite package is released under
GPLv3 and welcomes contributions via the project’s GitHub repository.

Acknowledgements

We thank all contributors who helped to develop atlite. Fabian Hofmann is funded by
the German Federal Ministry for Education and Research under grant nr. FKZ03EI1028A
(EnergiesysAI).

References

Andresen, G. B., Søndergaard, A. A., & Greiner, M. (2015). Validation of Danish wind time
series from a new global renewable energy atlas for energy system analysis. Energy, 93,
1074–1088. https://doi.org/10.1016/j.energy.2015.09.071

Beyer, H. G., Heilscher, G., & Bofinger, S. (2004). A robust model for the MPP performance
of different types of PV-modules applied for the performance check of grid connected
systems. EuroSun. Freiburg.

Brown, T., Schlachtberger, D., Kies, A., Schramm, S., & Greiner, M. (2018). Synergies of
sector coupling and transmission extension in a cost-optimised, highly renewable European
energy system. Energy, 160, 720–739. https://doi.org/10.1016/j.energy.2018.06.222

Dask Development Team. (2016). Dask: Library for dynamic task scheduling [Manual].
https://dask.org

Gillies, S., & others. (2021). Rasterio: Geospatial raster i/o for Python programmers (Version
1.2) [Computer software]. Mapbox. https://github.com/mapbox/rasterio

Henning, H.-M., & Palzer, A. (2014). A comprehensive model for the German electricity
and heat sector in a future energy system with a dominant contribution from renewable
energy technologiesPart I: Methodology. Renewable and Sustainable Energy Reviews, 30,
1003–1018. https://doi.org/10.1016/j.rser.2013.09.012

Holmgren, W. F., Hansen, C. W., & Mikofski, M. A. (2018). Pvlib python: A python
package for modeling solar energy systems. Journal of Open Source Software, 3(29), 884.
https://doi.org/10.21105/joss.00884

Hoyer, S., & Hamman, J. J. (2017). Xarray: N-D labeled Arrays and Datasets in Python.
Journal of Open Research Software, 5, 10. https://doi.org/10.5334/jors.148

Hörsch, J., Hofmann, F., Schlachtberger, D., & Brown, T. (2018). PyPSA-Eur: An open
optimisation model of the European transmission system. Energy Strategy Reviews, 22,
207–215. https://doi.org/10.1016/j.esr.2018.08.012

Huld, T., Gottschalg, R., Beyer, H. G., & Topič, M. (2010). Mapping the performance of
PV modules, effects of module type and data averaging. Solar Energy, 84(2), 324–338.
https://doi.org/10.1016/j.solener.2009.12.002

Kalogirou, S. (2009). Solar energy engineering: Processes and systems. Elsevier/Academic
Press. ISBN: 978-0-12-374501-9

Hofmann et al., (2021). atlite: A Lightweight Python Package for Calculating Renewable Power Potentials and Time Series. Journal of Open
Source Software, 6(62), 3294. https://doi.org/10.21105/joss.03294

6

https://pypi.org/project/atlite/
https://anaconda.org/conda-forge/atlite
https://github.com/PyPSA/atlite
https://atlite.readthedocs.io/en/master/
https://github.com/PyPSA/atlite/blob/master/LICENSES/GPL-3.0-or-later.txt
https://github.com/PyPSA/atlite
https://github.com/PyPSA/atlite/graphs/contributors
https://doi.org/10.1016/j.energy.2015.09.071
https://doi.org/10.1016/j.energy.2018.06.222
https://dask.org
https://github.com/mapbox/rasterio
https://doi.org/10.1016/j.rser.2013.09.012
https://doi.org/10.21105/joss.00884
https://doi.org/10.5334/jors.148
https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/10.1016/j.solener.2009.12.002
https://worldcat.org/isbn/978-0-12-374501-9
https://doi.org/10.21105/joss.03294


Landau, C. R. (2017). Optimum tilt of solar panels. https://www.solarpaneltilt.com/
Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: Baseline data

and new approaches to study the world’s large river systems. Hydrological Processes,
27(15), 2171–2186. https://doi.org/10.1002/hyp.9740

Liu, H., Andresen, G. B., Brown, T., & Greiner, M. (2019). A validated high-resolution
hydro power time-series model for energy systems analysis. MethodsX, 6, 1370–1378.
https://doi.org/10.1016/j.mex.2019.05.024

Michalsky, J. J. (1988). The Astronomical Almanac’s algorithm for approximate solar position
(1950). Solar Energy, 40(3), 227–235. https://doi.org/10.1016/0038-092x(88)90045-x

Pfenninger, S., & Staffell, I. (2016). Long-term patterns of European PV output using 30
years of validated hourly reanalysis and satellite data. Energy, 114, 1251–1265. https:
//doi.org/10.1016/j.energy.2016.08.060

Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar
Energy, 45(1), 1–7. https://doi.org/10.1016/0038-092X(90)90060-P

Ryberg, D., Robinius, M., & Stolten, D. (2018). Evaluating land eligibility constraints of
renewable energy sources in europe. Energies, 11(5), 1246. https://doi.org/10.3390/
en11051246

Sproul, A. B. (2007). Derivation of the solar geometric relationships using vector analysis.
Renewable Energy, 32(7), 1187–1205. https://doi.org/10.1016/j.renene.2006.05.001

Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current and
future wind power output. Energy, 114, 1224–1239. https://doi.org/10.1016/j.energy.
2016.08.068

Tröndle, T., Lilliestam, J., Marelli, S., & Pfenninger, S. (2020). Trade-Offs between Geo-
graphic Scale, Cost, and Infrastructure Requirements for Fully Renewable Electricity in
Europe. Joule, 4(9), 1929–1948. https://doi.org/10.1016/j.joule.2020.07.018

Hofmann et al., (2021). atlite: A Lightweight Python Package for Calculating Renewable Power Potentials and Time Series. Journal of Open
Source Software, 6(62), 3294. https://doi.org/10.21105/joss.03294

7

https://www.solarpaneltilt.com/
https://doi.org/10.1002/hyp.9740
https://doi.org/10.1016/j.mex.2019.05.024
https://doi.org/10.1016/0038-092x(88)90045-x
https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.1016/0038-092X(90)90060-P
https://doi.org/10.3390/en11051246
https://doi.org/10.3390/en11051246
https://doi.org/10.1016/j.renene.2006.05.001
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.energy.2016.08.068
https://doi.org/10.1016/j.joule.2020.07.018
https://doi.org/10.21105/joss.03294

	Summary
	Statement of need
	Basic Concept
	Cutout Creation and Preparation
	Conversion Functions
	Land-Use Restrictions

	Related Research
	Availability
	Acknowledgements
	References

