
Reiz: Structural Source Code Search
Batuhan Taskaya1

1 Python Core Developer
DOI: 10.21105/joss.03296

Software
• Review
• Repository
• Archive

Editor: Matthew Sottile
Reviewers:

• @lutzhamel
• @yuhc

Submitted: 24 April 2021
Published: 27 June 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
Reiz is a structural source code search engine that can execute queries written in ReizQL to
retrieve partially known syntactical constructs inside a pre-processed source index.

Statement of need
The fact that developers search source code every day is undeniable. This need to search has
various reasons by different groups of people. When introducing new features to a language,
developers often need to see what kind of an impact that those will have before actually
bothering to implement it (or even discuss it in the first place). Prior to making any changes
on a publicly facing API, maintainers of those libraries do the pre-requisite work of collecting
samples and estimating the ramifications that operation might cause. When the documenta-
tion of a framework doesn’t sustain the curiosity, searching for a structure (e.g., a function,
a constant) to see how it can be utilized in real-world software is a common need among
developers (Xia et al., 2017).
For the problems mentioned above, we present Reiz: a source code search engine backend
that can exercise queries to match syntax trees in order to leverage the existing language
syntax to describe partial knowledge (e.g., a searching for a try/ finally construct without
knowing what is under the try block).

State of the field
Popular source code search engines (e.g., GitHub Code Search GitHub Code Search (2021))
use full-text search where the code is treated no differently than a regular textual document.
Even though this approach works for some basic queries, structurally it can’t go further than
matching token sequences. This often causes seeing irrelevant search results on complex
queries, or even not being able to express the search itself in a purely textual form. In the
past, there has been some work done regarding making queries more expressive through regular
expressions (one example might codesearch.debian.net (Stapelberg, 2012)), and even anno-
tating the result set with some semantic and structural knowledge (via finding and resolving
API names (Bajracharya et al., 2014)). There also have been various tools (Kluyver, 2014;
Paganini, 2017) to search AST patterns within source code, but with a limited query format
and in a file-by-file basis (no index database) which makes them quite hard to work with in
order to examine a large dataset of source code.

Taskaya, B., (2021). Reiz: Structural Source Code Search. Journal of Open Source Software, 6(62), 3296. https://doi.org/10.21105/joss.03296 1

https://doi.org/10.21105/joss.03296
https://github.com/openjournals/joss-reviews/issues/3296
https://github.com/reizio/reiz.io
https://doi.org/10.5281/zenodo.5029255
https://computing.llnl.gov/casc
https://github.com/lutzhamel
https://github.com/yuhc
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03296

Method

Figure 1: Stages from the Reiz’s pipeline.

The internals consists of a pipeline that enables the ability to plug in and out different com-
ponents, such as for frontends of different languages. The primary piece that every other
component directly or indirectly interacts with is the Index DB (a.k.a. source warehouse)
where the serialized AASTs (Annotated Abstract Syntax Trees) are being held. It is based
on an EdgeDB (“EdgeDB,” 2020) instance which interprets the compiled queries and returns
the raw result set. The schema used in the Index DB is in the format of ESDL (EdgeDB
Schema Definition Language) and automatically generated from the host language’s ASDL
(Wang et al., 1997) declaration. ASDL is a common format used by many different projects,
most notably by CPython itself.

Sampling Source Code
Reiz is able to sample source code from a list of projects on a git remote (e.g., GitHub). The
reference implementation for Reiz comes with an indexer which can automatically construct a
list for the most popular packages on PyPI, according to the download statistics (Kemenade
& Si, 2021). The list then gets cross-linked to the project’s corresponding source control
platforms (so that, we can reference the revision that we are fetching). Later on, the data
gets downloaded via git and then gets sanitized until there is nothing left besides valid source
files for the host language.
Subsequently, files get parsed to the AST form offered by the host language, and then an-
notated with some static knowledge, so that the computation of these properties won’t cost
anything at runtime. The annotations include node tags (a unique identifier for a piece of AST

Taskaya, B., (2021). Reiz: Structural Source Code Search. Journal of Open Source Software, 6(62), 3296. https://doi.org/10.21105/joss.03296 2

https://doi.org/10.21105/joss.03296

that will be the same every time the same structure is annotated, like tree hash), ancestral
information (like a set of 2-element tuples, where the first one points to the parent type and
the the second one points to the field that the child belongs to) and metadata regarding the
project (like the filename, project name, GitHub URL). Afterward the annotated AST gets
serialized into the Index DB.

Query Compiler
start ::= match_pattern

pattern ::= negate_pattern
| or_pattern
| and_pattern
| match_pattern
| sequential_pattern
| reference_pattern
| match_string_pattern
| atom_pattern

negate_pattern ::= "not" pattern
or_pattern ::= pattern "|" pattern
and_pattern ::= pattern "&" pattern
match_pattern ::= NAME "(" ",".argument+ ")"
sequential_pattern ::= "[" ",".(pattern | "*" IGNORE)+ "]"
reference_pattern ::= "~" NAME
atom_pattern ::= NONE

| STRING
| NUMBER
| IGNORE
| "f" STRING

argument ::= pattern
| NAME "=" pattern

NONE ::= "None"
IGNORE ::= "..."
NAME ::= "a".."Z"
NUMBER ::= INTEGER | FLOAT

The grammar above describes the ReizQL language which is embedded into the execution
engine. It can be used as is, or can be selected as a compilation target for a higher level
language that is more integrated with the syntax of the host language.
Following query will search for all occurrences of a for loop, where the target’s result method
is called subsequently in the loop body. The target is an example of the reference pattern,
which has a query-bound value (e.g., if the first ~target capture is X, then the following
capture is also expected to be the same).
For(

target=~target,
body=[

Expr(
value=Call(

func=Attribute(value=~target, attr="result")
)

)

Taskaya, B., (2021). Reiz: Structural Source Code Search. Journal of Open Source Software, 6(62), 3296. https://doi.org/10.21105/joss.03296 3

https://doi.org/10.21105/joss.03296

],
)

The query in the example can be automatically generated through various forms, as well as
being hand written. For example, the IRun project targets ReizQL with a python superset
form to be a more human friendly interface to the engine:
for $target in ...:

$target.result()

Evaluation
For the limited subset of things that can be described in any of the competitor engines, we
evaluate the performance of Reiz by running similiar queries in Github Code Search (GitHub
Code Search, 2021) grep.app (Grep.app, 2021) and Krugle (Krugle.com, 2021) and report
back the amount of true / false positives. Each result that contains an exact match with the
intended objective, e.g., a call to len(...) function will be counted as a true positive, and
otherwise will be counted as a false positive. Some engines offer multiple matches per result,
and they will be marked as true positive if any of them checks out with the objective. We
also discard match spans, since none of the competitors can successfully display the expression
boundaries.
Objective: search for a len(...) call

engine query true positives false positives
Github Code Search language:python len() 5 5
grep.app len\((.*)\) 10 0
Krugle (advanced) len functioncall:len 10 0
Reiz Call(Name("len")) 10 0

Objective: search for an addition or a subtraction operation

engine query true positives false positives
Github Code Search language:python + - 0 0
Krugle (fuzzy) expr + expr / expr - expr 0 0
Krugle (solr syntax) \+ \- 2 8
Krugle (regex syntax) (.*)(\+\|\-)(.*) 1 9
grep.app (.*)(\+\|\-)(.*) 2 8
Reiz BinOp(op=Add() \| Sub()) 10 0

Objective: search for a return statement that returns a tuple return ..., ...

engine query true positives false positives
Github Code Search language:python return , 2 8
Krugle (solr syntax) return \, 1 9
Krugle (regex syntax) return ((.*))(,\s*(.*))+ 0 10
grep.app return ((.*))(,\s*(.*))+ 0 10
grep.app (2) return \(((.*))(,\s*(.*))+\) 9 1
Reiz Return(Tuple()) 10 0

Taskaya, B., (2021). Reiz: Structural Source Code Search. Journal of Open Source Software, 6(62), 3296. https://doi.org/10.21105/joss.03296 4

https://doi.org/10.21105/joss.03296

Conclusion
On all three objectives, Reiz got all the matches as true-positive due to due to it’s ability
to leverage syntax tree structure as well as other annotations that it could collect at pre-
processing stage (such as node boundaries to report the exact location) unlike others where
the source code is exercised like a regular textual document.

References
Bajracharya, S., Ossher, J., & Lopes, C. (2014). Sourcerer: An infrastructure for large-scale

collection and analysis of open-source code. Science of Computer Programming, 79, 241–
259. https://doi.org/10.1016/j.scico.2012.04.008

EdgeDB: The next generation relational database. (2020). In GitHub repository. EdgeDB.
https://github.com/edgedb/edgedb

GitHub code search. (2021). GitHub. https://github.com/search
Grep.app. (2021). grep.app. https://grep.app
Kemenade, H. van, & Si, R. (2021). Hugovk/top-pypi-packages: Release 2021.04. https:

//doi.org/10.5281/zenodo.4657163
Kluyver, T. (2014). Astsearch: Intelligently search in python code. In GitHub repository.

https://github.com/takluyver/astsearch
Krugle.com. (2021). krugle.com. https://krugle.com
Paganini, J. D. (2017). Fast: Find in AST. In GitHub repository. https://github.com/jonatas/

fast
Stapelberg, M. (2012). Debian code search. In Bachelor-Thesis. Hochschule Mannheim

Fakultät für Informatik. http://codesearch.debian.net/research/bsc-thesis.pdf
Wang, D. C., Appel, A. W., Korn, J. L., & Serra, C. S. (1997). The zephyr abstract syntax

description language. Proceedings of the Conference on Domain-Specific Languages on
Conference on Domain-Specific Languages (DSL), 1997, 17.

Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., & Xing, Z. (2017). What do
developers search for on the web? Empirical Softw. Engg., 22(6), 3149–3185. https:
//doi.org/10.1007/s10664-017-9514-4

Taskaya, B., (2021). Reiz: Structural Source Code Search. Journal of Open Source Software, 6(62), 3296. https://doi.org/10.21105/joss.03296 5

https://doi.org/10.1016/j.scico.2012.04.008
https://github.com/edgedb/edgedb
https://github.com/search
https://grep.app
https://doi.org/10.5281/zenodo.4657163
https://doi.org/10.5281/zenodo.4657163
https://github.com/takluyver/astsearch
https://krugle.com
https://github.com/jonatas/fast
https://github.com/jonatas/fast
http://codesearch.debian.net/research/bsc-thesis.pdf
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.21105/joss.03296

	Summary
	Statement of need
	State of the field
	Method
	Sampling Source Code
	Query Compiler

	Evaluation
	Conclusion

	References

