
tfaip - a Generic and Powerful Research Framework for
Deep Learning based on Tensorflow
Christoph Wick1, Benjamin Kühn1, Gundram Leifert1, Konrad
Sperfeld2, Tobias Strauß1, Jochen Zöllner1,2, and Tobias Grüning1

1 Planet AI GmbH, Warnowufer 60, 18059 Rostock, Germany 2 Institute of Mathematics,
University of Rostock, 18051 Rostock, Germany

DOI: 10.21105/joss.03297

Software
• Review
• Repository
• Archive

Editor: Arfon Smith
Reviewers:

• @levimcclenny
• @Het-Shah

Submitted: 31 March 2021
Published: 22 June 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

tfaip is a Python-based research framework for developing, structuring, and deploying Deep
Learning projects powered by Tensorflow (Abadi et al., 2015) and is intended for scientists
of universities or organizations who research, develop, and optionally deploy Deep Learn-
ing models. tfaip enables both simple and complex implementation scenarios, such as image
classification, object detection, text recognition, natural language processing, or speech recog-
nition. Each scenario is highly configurable by parameters that can directly be modified by
the command line or the API.

Statement of Need

The implementation of a scenario during research and development typically comprises several
tasks, for example setting up the graph (e.g., the network architecture), the training (e.g.,
the optimizer or learning rate schedule), and the data pipeline (e.g., the data sources). In
most current frameworks such as Tensorflow or Keras (see next Section), the implementation is
realized by one or several (unstructured) files in Python which can become difficult to maintain
and read for bigger scenarios. Furthermore, comparable frameworks also only provide basic
functionality which is why recurrent obstacles during research and development are typically
redundant for each scenario. tfaip resolves the following different aspects in an elegant and
robust way.
During research, a scenario is usually configured via a command line interface (CLI) which
usually must be implemented by the user itself. tfaip already provides a powerful CLI which
is dynamically created upon runtime by parsing a nested dataclass hierarchy. To add a new
parameter or even a new set of sub parameters, a user simply has to add a new field to
the respective dataclass. Compared to other approached where all possible parameters are
simultaneously available in the CLI, the dynamic approach of tfaip only shows the available
arguments. This prevents users from making mistakes by setting parameters without effect for
the current configuration (e.g., setting the factor for an Adam optimizer even though RMSprop
was selected). The default CLI of tfaip provides commands to adapt various hyper-parameters
such as the learning rate and its schedule, the optimizer, logging, debugging, profiling, or early
stopping. Furthermore, each component of the scenario can itself be fully customized which
allows, for example, to dynamically configure the network architecture, e.g., by inserting layers
or changing their parameters. This feature helps researchers to set up various experiments for
example to optimize hyper-parameters or test novel ideas.
In comparison to other frameworks such as Tensorflow, tfaip requires users to implement
their scenarios in an object-oriented way and encourages them to annotate their code with

Wick et al., (2021). tfaip - a Generic and Powerful Research Framework for Deep Learning based on Tensorflow. Journal of Open Source
Software, 6(62), 3297. https://doi.org/10.21105/joss.03297

1

https://doi.org/10.21105/joss.03297
https://github.com/openjournals/joss-reviews/issues/3297
https://github.com/Planet-AI-GmbH/tfaip
https://doi.org/10.5281/zenodo.5011366
http://arfon.org/
https://github.com/levimcclenny
https://github.com/Het-Shah
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03297


types. This is particularly advantageous for larger, more complex scenarios where the codebase
grows accordingly. Using tfaip leads to a clean, structured, modularized, and readable code
limiting poor coding styles and facilitating maintenance. In practice, each scenario is created
by implementing predefined interfaces (e.g., loss-function or the graph construction).
During research and development, a tedious step is data preparation which often comprises the
conversion of data into the format required by the framework. The Tensorflow-backed tfaip
allows integrating Python code in the data pipeline which is however not run (truly) in parallel
by multiple processes and results quite often in a bottleneck. To speed-up Tensorflow, a user
has to transform Python into Tensorflow operations which is laborious, and sometimes even
impossible, and complicates debugging. tfaip tackles this issue by providing a sophisticated
pipeline setup based on “data processors” which apply simple transformation operations in
pure Python code and are automatically executed in parallel.
Another important step which is simplified by tfaip is the deployment of a scenario. Other
frameworks such as plain Tensorflow or Keras allow to easily load a trained model for prediction
which does however not include data processing. The prediction API of tfaip instead auto-
matically applies pre-processing, infer the trained model, and optionally transform the output
by a post-processing pipeline in one step. The information about the pipeline-construction
is embedded within the model which enables to store and load models with a different data
pipeline even for the same scenario. This is handy if, for example, certain pre-processing steps
are not required for one specific model or other inputs are expected.
Finally, tfaip will automatically log the training process using the Tensorboard and provides
utility scripts to resume a crashed or stopped training, or to set up an array of training
configurations via an Excel sheet.

State of the Field

Efficient research in the area of Deep Learning requires the integration of highly sophisticated
Open-Source frameworks such as Tensorflow (Abadi et al., 2015), PyTorch (Paszke et al.,
2019), Caffe (Jia et al., 2014), CNTK (Seide & Agarwal, 2016), or Trax (Google Inc., 2021).
These frameworks provide efficient tools to freely design Deep Learning scenario of any size and
complexity. However, as the number of lines of code grows, a project has to be structured into
meaningful components to be maintainable. These components are almost identical for each
Deep Learning scenario: there are modules for the graph, the model, the data, the training, the
validation, and the prediction (i.e., the application of a trained model). Furthermore, support
for dynamic parameter adaption for instance via the command line is desirable for efficient
research. Therefore, to obtain a clean code base, it is highly desirable to only implement
abstract templates that already set up the interaction among the modules by providing basic
functionality that is required in any use-case. tfaip which is an extension to Tensorflow solves
this and thus helps developers to efficiently handle and maintain small but also large-scale
projects in research environments.
Recently, several AutoML approaches have emerged, e.g., by Google Cloud or Microsoft Azure.
AutoML targets developers with limited machine learning expertise and enables them to train
their own models by automating processes like network construction, feature engineering, or
hyperparameter tuning. In contrast, tfaip targets researchers with expertise in deep learning
who actually design new network architectures, data processing pipelines, and setup training,
but with only limited experience in or capacity for software engineering. tfaip helps to structure
and maintain the code bases, and hereby also solves some recurrent problems that will likely
occur during development (see next Section).

Wick et al., (2021). tfaip - a Generic and Powerful Research Framework for Deep Learning based on Tensorflow. Journal of Open Source
Software, 6(62), 3297. https://doi.org/10.21105/joss.03297

2

https://doi.org/10.21105/joss.03297


tfaip Functionality

In the following, we highlight the main functionality of tfaip.
A basic concept of tfaip is to split parameters and their actual object whereby the parameters
are used to instantiate the corresponding object. This allows to build a hierarchical parameter
tree where each node can be replaced with other parameters. Each parameter and also the
replacements can be defined via the command line which enables to dynamically adapt, for
example, even complete graphs of a model. In a research environment this simplifies hyper-
parameter search and the setup of experiments.
Class-templates define the logical structure of a real-world scenario. Each scenario requires the
definition of a model and a data class whereby basic functionality such as training, exporting,
or loading of a model using the data is already provided.
To set up the data pipeline, a data generator and a list of data processors have to be imple-
mented that define how raw data flows. The prepared data is then automatically fed into the
neural network. Since each data processor is written in pure Python, it is simple to set up
and debug the data processing pipeline. To speed up the data sample generation the pipeline
can automatically be run in parallel.
The model comprises information about the loss, metrics, and the graph of the scenario. Its
template hereby requires the user to implement methods, the superordinate modules are then
connected automatically.
tfaip tracks the training and validation process by utilizing the Tensorboard provided by Ten-
sorflow. The Tensorboard can be extended by custom data, for example by plotting Precision-
Recall (PR) curves or rendering images.
The prediction module loads a trained scenario so that it can easily be applied on new data
during deployment. Since a model stores its pre- and post-processing pipeline no additional
data handling has to be performed.
Because each scenario follows a predefined setup, shared research code is clearer and conse-
quently can be easier reviewed, extended, or applied. For example, this modularity simplifies
the process if several users are working together on the same scenario.
An important feature of tfaip is the consistent use of Python’s typing module including type
checks. This leads to clean understandable code and fewer errors during development. Fur-
thermore, this enables IDEs such as PyCharm (JetBrains, 2021) to perform autocompletion.
In some rare cases, the highly generic API of tfaip might not be sufficient. To tackle this,
each scenario can optionally customize any functionality by implementing the base classes, for
example the trainer or the data pipeline.

tfaip Documentation and Tutorials

To help new users to become familiar with tfaip, a comprehensive documentation, several
tutorials, and example scenarios with real-world use-cases are available. First, tfaip provides
two tutorials that solve the classification of MNIST: the minimal scenario shows the minimal
implementation that is required to implement the common MNIST-tutorial in tfaip, the full
scenario implements the same use-case and highlights different advanced features of tfaip.
Some more examples are provided by transferring official Tensorflow tutorials in the tfaip
framework. These scenarios show the power of the framework as complex scenarios are log-
ically split into meaningful parts and components. The examples comprise Automatic Text
Recognition (ATR) of single text line images, Image Classification, and Fine Tuning of a
BERT.

Wick et al., (2021). tfaip - a Generic and Powerful Research Framework for Deep Learning based on Tensorflow. Journal of Open Source
Software, 6(62), 3297. https://doi.org/10.21105/joss.03297

3

https://doi.org/10.21105/joss.03297


Finally, templates for two basic scenarios allow setting up a new scenario by copying basic
code and modifying it afterwards. All required files and classes are already set up, solely the
abstract methods have to be implemented and classes should be renamed.

Usage of tfaip in Research

Diverse active research projects are already based on tfaip. Zöllner et al. (2021) integrated
tfaip to solve Natural Language Processing (NLP) problems. Since its 2.0 release, the open-
source ATR engine Calamari by Wick et al. (2020) is based on tfaip. Our research, for example
a recent publication on ATR using Transformers, uses tfaip (Wick et al., 2021).

Acknowledgments

The authors would like to thank the open-source community, especially the developers and
maintainers of Python, Tensorflow, and Numpy, since these packages empower tfaip.
This work was partially funded by the European Social Fund (ESF) and the Ministry of
Education, Science and Culture of Mecklenburg-Western Pomerania (Germany) within the
project NEISS under grant no ESF/14-BM-A55-0006/19.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. https://www.tensorflow.org/

Google Inc. (2021). Trax. In GitHub repository. https://github.com/google/trax; GitHub.
JetBrains. (2021). PyCharm. https://jetbrains.com/pycharm.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., &

Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv
Preprint arXiv:1408.5093.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An
imperative style, high-performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Seide, F., & Agarwal, A. (2016). CNTK: Microsoft’s open-source deep-learning toolkit. 2135–
2135. https://doi.org/10.1145/2939672.2945397

Wick, C., Reul, C., & Puppe, F. (2020). Calamari - A High-Performance Tensorflow-based
Deep Learning Package for Optical Character Recognition. Digital Humanities Quarterly,
14(1).

Wick, C., Zöllner, J., & Grüning, T. (2021). Bidirectional Transformer for Handwritten
Text Recognition. 16th International Conference on Document Analysis and Recognition
(ICDAR), accepted for.

Zöllner, J., Sperfeld, K., Wick, C., & Labahn, R. (2021). Optimizing small BERTs trained for
german NER. Computational Linguistics, submitted to.

Wick et al., (2021). tfaip - a Generic and Powerful Research Framework for Deep Learning based on Tensorflow. Journal of Open Source
Software, 6(62), 3297. https://doi.org/10.21105/joss.03297

4

https://www.tensorflow.org/
https://github.com/google/trax
https://jetbrains.com/pycharm
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.21105/joss.03297

	Summary
	Statement of Need
	State of the Field
	tfaip Functionality
	tfaip Documentation and Tutorials
	Usage of tfaip in Research
	Acknowledgments
	References

