
The Babelizer: language interoperability for model
coupling in the geosciences
Eric W. H. Hutton1, Mark D. Piper1, and Gregory E. Tucker123

1 Community Surface Dynamics Modeling System, University of Colorado Boulder 2 Cooperative
Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder 3
Department of Geological Sciences, University of Colorado Boulder

DOI: 10.21105/joss.03344

Software
• Review
• Repository
• Archive

Editor: Kristen Thyng
Reviewers:

• @lheagy
• @cheginit

Submitted: 09 April 2021
Published: 19 March 2022

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary
The babelizer is a Python utility that generates code to import libraries from other languages
into Python. Target libraries must expose a Basic Model Interface (BMI) (Hutton et al.,
2020; Peckham et al., 2013) and be written in C, C++, or Fortran, although the babelizer
is extendable, so other languages can be added in the future. The babelizer provides a
streamlined mechanism for bringing scientific models into a common language where they can
communicate with one another as components of an integrated model.

Statement of need
With an integrated multicomponent approach to modeling, scientists–not just software devel-
opers–connect components to form integrated models, where plug-and-play components can
easily be added or removed (Collins et al., 2005; David et al., 2013; Gregersen et al., 2007;
Tucker et al., 2022). This is in contrast to older methods, where a single modeling group
would construct a monolithic model built on the tight integration of software written within
an isolated framework. A single person or group would control model development. Outside
contributors would go through a gatekeeper to ensure compatibility. The software elements
that made up the model would be tied to the larger model and, generally, not used outside of
the framework.

Component modeling democratizes model building by empowering the larger scientific com-
munity to develop model components. This allows for more innovation and experimentation
driven from the bottom up by a community. It reduces redundancy–rather than reinventing
software, scientists can find and use models that suit their needs–and it allows scientists to
focus on new and unsolved problems.

There are disadvantages, however. Without a single group to guide model development, there
is a greater risk that community-developed models will become incompatible with one another.
With hundreds of scientists developing models in isolation, there is a greater likelihood models
will be written with idiosyncratic designs, incompatible grids, incompatible time steps, and in
different programming languages. The Earth-surface modeling community has developed tools
to help solve some of these problems. For example, the Basic Model Interface standardizes
model interactions. The Earth System Modeling Framework (ESMF) (Collins et al., 2005) grid
mappers are able to map quantities from one grid to another. The Python Modeling Toolkit
pymt (Hutton & Piper, 2020) performs time interpolation, grid mapping, and unit coversion.
In this paper, we present a solution to the language incompatibility problem.

Hutton et al. (2022). The Babelizer: language interoperability for model coupling in the geosciences. Journal of Open Source Software, 7(71),
3344. https://doi.org/10.21105/joss.03344.

1

https://doi.org/10.21105/joss.03344
https://github.com/openjournals/joss-reviews/issues/3344
https://github.com/csdms/babelizer/
https://doi.org/10.5281/zenodo.6329737
http://kristenthyng.com/
https://github.com/lheagy
https://github.com/cheginit
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03344


Overcoming the language incompatibility problem
To get an idea of the range of programming languages used in Earth-surface modeling, we can
look to the Community Surface Dynamics Modeling System (CSDMS) model repository. As
of June 2020, the repository holds over 370 open source models and tools submitted by the
community. These contributions span a range of languages, with Python, C, and Fortran being
the most popular (Figure 1). The mix of languages raises an interesting challenge in creating
an interoperable modeling framework. Our solution is to use a hub-and-spoke approach, where
Python is the hub language that connects to other languages. We chose Python as the hub
because of its popularity in the scientific community, its extensive collection of third-party
libraries (including model coupling frameworks such as the pymt), and its existing ability to
communicate with other programming languages. We have built the babelizer to generate the
spokes that connect Python to other languages.

Figure 1: The distribution of programming languages used in the models in the CSDMS model
repository. (Data from https://csdms.colorado.edu/wiki/CSDMS_models_by_numbers.)

Using the CSDMS model repository as a guide, if we build translators for the open source
languages C, C++, Fortran, and Python, we will cover 80 percent of the contributed models.
A drawback of using Python is that it can be relatively slow compared to compiled languages
like C and Fortran; however, the models being wrapped are compiled and run in their native
language, which is where the bulk of the computation takes place, with the babelizer providing
only a thin wrapper layer.

The Common Component Architecture

The babelizer is, in part, inspired by the work of Epperly et al. (2012) and their development
of the Common Component Architecture (CCA) tools and, in particular, the multi-language
compiler, babel. Babel is not a compiler per se but, rather, a code generator that produces
glue code to provide cross-language interoperability. The generated code is then passed to a

Hutton et al. (2022). The Babelizer: language interoperability for model coupling in the geosciences. Journal of Open Source Software, 7(71),
3344. https://doi.org/10.21105/joss.03344.

2

https://doi.org/10.21105/joss.03344


traditional compiler to build libraries. Whereas the babelizer uses Python as the hub language
to connects its supported languages, babel itself acts as the hub, generating spokes to each
supported language so that languages talk directly to one another. That is, babel is capable
of generating bridges from each of its supported languages directly to every other supported
language. Babel also supports arbitrary interfaces while the babelizer is only able to wrap
libraries that expose a BMI.

Grpc4BMI

Another alternative solution to the language interoperability problem is to treat models as
web services that expose a BMI; e.g., Grpc4BMI (Hut et al., 2021). In such a framework,
models are built on separate servers or within their own software container (e.g. Docker) and
interact with clients through network ports. Isolating models within environments eliminates
the potential of dependency conflicts between models and requires them to only be built within
one specific environment or operating system.

Design of the babelizer
The babelizer is a command-line utility that generates the glue code to bring a model exposing
a BMI from another language into Python. Because the BMI is a well-defined standard, the
babelizer requires only a small amount of metadata to generate the glue code. The metadata
depends somewhat on the language being wrapped, but includes the name of the library
providing the BMI, the name of an entry point into the library, the language the library was
written in, and any necessary compiler flags. With this metadata, the babelizer creates a new
git repository, a Python package containing the Python interface to the model, documentation,
and sets up continuous integrations and a test suite for the model’s BMI. The model can then
be imported and run through Python.

The user provides metadata describing their model through a toml-formatted file (see Figure 2
for an example). The babelizer uses the metadata to fill a set of jinja-formatted template files
to construct the new repository (or update an existing repository). The entire repository is
almost completely auto-generated, which means it can easily be regenerated. The only files a
user need edit are the main configuration file, babel.toml, and any optional model data files,
which are installed along with the new component.

Data files provided to a babelized component are intended to be used either by a user of
the new component or by a separate framework that imports the component. There is little
restriction on the contents of the files, but typically they are sample input files that a user of the
component can use to run the model. Another use-case is where the component will be used
within a separate modeling framework and that framework may require additional metadata.
As an example, the pymt is a modeling framework able to work with generic BMI models. In
addition to the BMI, the pymt requires descriptive information about the model (e.g. authors,
license, references, summary of what it does, etc.) as well as jinja-formatted sample input
files. The pymt uses the template input files as part of a utility for a user to programmatically
generate model input files without having to know anything about the idiosyncratic details of
those model input files. Within such a framework, therefore, a user is given model components
with a standardized way to create input files, as well as a common Python interface to run
and interact with the model.

Hutton et al. (2022). The Babelizer: language interoperability for model coupling in the geosciences. Journal of Open Source Software, 7(71),
3344. https://doi.org/10.21105/joss.03344.

3

https://doi.org/10.21105/joss.03344


[library]
[library.PRMSSurface]
language = "fortran"
library = "bmiprmssurface"
header = ""
entry_point = "bmi_prms_surface"

[build]
undef_macros = []
define_macros = []
libraries = []
library_dirs = []
include_dirs = []
extra_compile_args = []

[package]
name = "pymt_prms_surface"
requirements = ["prms", "prms_surface"]

[info]
github_username = "pymt-lab"
package_author = "Community Surface Dynamics Modeling System"
package_author_email = "csdms@colorado.edu"
package_license = "MIT"
summary = "PRMS6 surface water process component"

[ci]
python_version = ["3.9"]
os = ["linux", "mac", "windows"]

1

Figure 2: The babelizer configuration file (babel.toml) for the Precipitation-Runoff Modeling System
v6 surface water component, PRMSSurface (Piper et al., 2020). Running the babelizer with this file
produces most of the repository https://github.com/pymt-lab/pymt_prms_surface.

Acknowledgements
This work is supported by the National Science Foundation under Grant No. 1831623, Com-
munity Facility Support: The Community Surface Dynamics Modeling System (CSDMS).

References
Collins, N., Theurich, G., Deluca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang, W.,

Hill, C., & Da Silva, A. (2005). Design and implementation of components in the earth
system modeling framework. The International Journal of High Performance Computing
Applications, 19(3), 341–350. https://doi.org/10.1177/1094342005056120

David, O., Ascough, J. C., Lloyd, W., Green, T. R., Rojas, K. W., Leavesley, G. H., & Ahuja,
L. R. (2013). A software engineering perspective on environmental modeling framework
design: The object modeling system. Environmental Modelling & Software, 39, 201–213.
https://doi.org/10.1016/j.envsoft.2012.03.006

Epperly, T. G., Kumfert, G., Dahlgren, T., Ebner, D., Leek, J., Prantl, A., & Kohn, S.
(2012). High-performance language interoperability for scientific computing through babel.

Hutton et al. (2022). The Babelizer: language interoperability for model coupling in the geosciences. Journal of Open Source Software, 7(71),
3344. https://doi.org/10.21105/joss.03344.

4

https://doi.org/10.1177/1094342005056120
https://doi.org/10.1016/j.envsoft.2012.03.006
https://doi.org/10.21105/joss.03344


The International Journal of High Performance Computing Applications, 26(3), 260–274.
https://doi.org/10.1177/1094342011414036

Gregersen, J., Gijsbers, P., & Westen, S. (2007). OpenMI: Open modelling interface. Journal
of Hydroinformatics, 9(3), 175–191. https://doi.org/10.2166/hydro.2007.023

Hut, R., Drost, N., Giesen, N. van de, Werkhoven, B. van, Abdollahi, B., Aerts, J., Albers, T.,
Alidoost, F., Andela, B., Camphuijsen, J., Dzigan, Y., Haren, R. van, Hutton, E., Kalverla,
P., Meersbergen, M. van, Oord, G. van den, Pelupessy, I., Smeets, S., Verhoeven, S., …
Weel, B. (2021). The eWaterCycle platform for open and FAIR hydrological collaboration.
Geoscientific Model Development Discussions, 1–31.

Hutton, E. W. H., & Piper, M. D. (2020). The python modeling toolkit (Version v1.0.0)
[Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3644240

Hutton, E. W. H., Piper, M. D., & Tucker, G. E. (2020). The basic model interface 2.0:
A standard interface for coupling numerical models in the geosciences. Journal of Open
Source Software, 5(51), 2317. https://doi.org/10.21105/joss.02317

Peckham, S. D., Hutton, E. W., & Norris, B. (2013). A component-based approach to
integrated modeling in the geosciences: The design of CSDMS. Computers & Geosciences,
53, 3–12. https://doi.org/10.1016/j.cageo.2012.04.002

Piper, M., McDonald, R., Hutton, E., Markstrom, S., Parker, N., & Tucker, G. (2020). Coupling
hydrologic models with data services in an interoperable modeling framework. Earth and
Space Science Open Archive ESSOAr. https://doi.org/10.1002/essoar.10504855.1

Tucker, G. E., Hutton, E. W. H., Piper, M. D., Campforts, B., Gan, T., Barnhart, K. R.,
Kettner, A. J., Overeem, I., Peckham, S. D., McCready, L., & Syvitski, J. (2022). CSDMS:
A community platform for numerical modeling of earth surface processes. Geoscientific
Model Development, 15(4), 1413–1439. https://doi.org/10.5194/gmd-15-1413-2022

Hutton et al. (2022). The Babelizer: language interoperability for model coupling in the geosciences. Journal of Open Source Software, 7(71),
3344. https://doi.org/10.21105/joss.03344.

5

https://doi.org/10.1177/1094342011414036
https://doi.org/10.2166/hydro.2007.023
https://doi.org/10.5281/zenodo.3644240
https://doi.org/10.21105/joss.02317
https://doi.org/10.1016/j.cageo.2012.04.002
https://doi.org/10.1002/essoar.10504855.1
https://doi.org/10.5194/gmd-15-1413-2022
https://doi.org/10.21105/joss.03344

	Summary
	Statement of need
	Overcoming the language incompatibility problem
	The Common Component Architecture
	Grpc4BMI


	Design of the babelizer
	Acknowledgements
	References

