
Makie.jl: Flexible high-performance data visualization for
Julia
Simon Danisch1 and Julius Krumbiegel2

1 Beacon Biosignals 2 Department of Systems Neuroscience, University Medical Center
Hamburg-Eppendorf

DOI: 10.21105/joss.03349

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @fverdugo
• @gaelforget

Submitted: 25 April 2021
Published: 01 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Makie.jl is a cross-platform plotting ecosystem for the Julia programming language (Bezan-
son et al., 2012), which enables researchers to create high-performance, GPU-powered, inter-
active visualizations, as well as publication-quality vector graphics with one unified interface.
The infrastructure based on Observables.jl allows users to express how a visualization
depends on multiple parameters and data sources, which can then be updated live, either
programmatically, or through sliders, buttons and other GUI elements. A sophisticated layout
system makes it easy to assemble complex figures. It is designed to avoid common difficulties
when aligning nested subplots of different sizes, or placing colorbars or legends freely without
spacing issues. Makie.jl leverages the Julia type system to automatically convert many kinds
of input arguments which results in a very flexible API that reduces the need to manually pre-
pare data. Finally, users can extend every step of this pipeline for their custom types through
Julia’s powerful multiple dispatch mechanism, making Makie a highly productive and generic
visualization system.

Statement of need

Visualizations are crucial for all scientists around the world who want to effectively understand
and communicate their data. Flexible and powerful plotting software is required to create
publication-quality vector graphics, animated movies and interactive data exploration tools.
Most options that are available today lack one or more of the following attributes: High
performance for the responsive rendering of large datasets, interactive visualizations that can
be updated live using dynamic languages, the ability to extend the plotting pipeline to handle
user-defined data structures and types, implementations of both 2D and 3D rendering, and
the power to construct complex figures without having to tweak subplot positions after the
fact in image editing software. Therefore, researchers have to switch between tools which
means they have to spend more time to learn unfamiliar syntax and redo work if one software
turns out to lack critical abilities for the task at hand.
Makie.jl is a new plotting package which is built from the ground up to leverage the power
of Julia, a relatively young programming language which excels at technical computing and
has seen steady growth of its user base since reaching the 1.0 milestone in 2018. Julia users
have historically often used plotting software from other ecosystems, such as matplotlib
(Hunter, 2007) or ggplot2 (Wickham, 2011) through interface packages to Python and R
like PyCall.jl and RCall.jl. But these wrapper packages cannot take full advantage
of Julia’s type system and multiple dispatch paradigm, so they leave both performance and
flexibility on the table.

Danisch et al., (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
https://doi.org/10.21105/joss.03349

1

https://doi.org/10.21105/joss.03349
https://github.com/openjournals/joss-reviews/issues/3349
https://github.com/JuliaPlots/Makie.jl
https://doi.org/10.5281/zenodo.5106448
https://kevinmoerman.org
https://github.com/fverdugo
https://github.com/gaelforget
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03349

The widely used Plots.jl package (Breloff, 2021) on the other hand offers a powerful and
convenient abstraction on top of established plotting libraries from other languages. While its
recipe system utilizes the strengths of Julia’s multiple dispatch, the multi-backend approach
means that only a limited subset of each backend’s functionality is available. Interactivity is
also not a priority, so for maximum control and performance, users have to look elsewhere.
Makie.jl aims to fill this gap in the Julia ecosystem.

Example

The following figure illustrates a few key features of Makie.jl: The map example augments
a dataset of the world’s airports to 100 million points, a size that is too large to be rendered
in reasonable time by many other plotting solutions. GLMakie can handle such amounts of
data given a sufficiently powerful GPU.
The mandelbrot fractal heatmap on the right is plotted by simply passing an x- and y-range, as
well as the mandelbrot function, which is then automatically evaluated for all xy combinations.
Julia’s multiple dispatch mechanism is, in very simple terms, a way to overload functions with
different versions or methods, that are chosen depending on the set of input arguments. This
allows Makie to offer very flexible input argument alternatives, which get the user to their
visualization faster, by reducing common redundant data preprocessing steps.
The volumetric contour and mesh plots in the bottom row showcase Makie’s 3D ability.
Complex meshes can be visualized and interacted with effortlessly.
The figure layout is iteratively built by simply specifying object positions like f[1, 1] for “first
row, first column of the figure,” or even nested like f[1:2, 2][2, 1:2] for “first two rows,
second column, and there in a nested layout second row, first two columns.” Users do not
have to set up grid structures of the correct sizes a priori, but can simply add objects where
they are required and the layouts grow automatically. The figure title is another example of
this, it is placed at f[0, :] which means “one row above the current first row, across all
columns.” Adding a zero-th row, simply shifts all other rows downwards, and is a very simple
and intuitive way of adding elements to an existing structure. While other packages offer
functions like supertitle, these are usually limited by their assumptions about the figure
layout and can’t handle more unusual requirements. In Makie, text can be placed anywhere
in a layout and it’s trivial to construct complex figures with multiple grids and subheaders this
way.

using GLMakie, GLMakie.FileIO
using LinearAlgebra: norm
using DelimitedFiles

f = Figure(resolution = (1400, 1000))

a = readdlm(assetpath("airportlocations.csv"))
reduce this number if your GPU is not powerful enough
n_points = 100_000_000
a_rep = repeat(a, n_points ÷ size(a, 1), 1) .+ randn.()
scatter(f[1, 1], a_rep, color = (:black, 0.01), markersize = 1.0,

strokewidth = 0, axis = (title = "Airports (100 Million points)",
limits = (-200, 200, -70, 80)))

r = LinRange(-5, 5, 100)
volume = [sin(x) + sin(y) + 0.1z^2 for x = r, y = r, z = r]
ax, c = contour(f[2, 1][1, 1], volume, levels = 8, colormap = :viridis,

Danisch et al., (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
https://doi.org/10.21105/joss.03349

2

https://doi.org/10.21105/joss.03349

axis = (type = Axis3, viewmode = :stretch, title = "3D contour"))
Colorbar(f[2, 1][1, 2], c, label = "intensity")

function mandelbrot(x, y)
z = c = x + y*im
for i in 1:30.0; abs(z) > 2 && return i; z = z^2 + c; end; 0

end
ax2, hm = heatmap(f[1:2, 2][1, 2], -2:0.005:1, -1.1:0.005:1.1, mandelbrot,

colormap = Reverse(:deep), axis = (title = "Mandelbrot set",))
hidedecorations!(ax2)
Colorbar(f[1:2, 2][1, 1], hm, flipaxis = false,
label = "Iterations", height = 300)

Axis3(f[1:2, 2][2, 1:2], aspect = :data, title = "Brain mesh")
brain = load(assetpath("brain.stl"))
color = [-norm(x[1] .- Point(-40, 10, 45)) for x in brain for i in 1:3]
mesh!(brain, color = color, colormap = :thermal)

Label(f[0, :], "Makie.jl Example Figure")

save("paper_example.png", f)

Figure 1: GLMakie can visualize scatter plots with 100 million points (given a GPU with sufficient
memory) and render three-dimensional volumes or meshes. Axes and colorbars can be placed freely
in nested grids and aligned in a visually pleasing way. The mandelbrot fractal heatmap demonstrates
one use of Julia’s multiple dispatch, as the mandelbrot function can be directly evaluated on a two-
dimensional grid without manually preparing arrays. Note that some 3D plots such as the displayed
contour are not available in CairoMakie due to the technical limitations of vector graphics.

Danisch et al., (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
https://doi.org/10.21105/joss.03349

3

https://doi.org/10.21105/joss.03349

Overview

Makie.jl is the core package, which contains the infrastructure that plots are built out of.
It defines primitive plot types such as lines, scatters, heatmaps and text, which can be freely
combined to build up higher-level recipes such as density plots, histograms, and contour plots.
There are currently three different backends for Makie, which are GLMakie.jl, CairoMaki
e.jl and WGLMakie.jl. Each backend package has a different set of strengths: GLMakie
excels at high-performance plotting with large datasets, CairoMakie creates beautiful vector
graphics and WGLMakie can be run in the browser. Users can switch back and forth between
backends easily, allowing them to, for example, build up a figure piece by piece in GLMakie,
explore the data interactively, and then save a publication-quality version with CairoMakie.
Note that CairoMakie is generally limited to the subset of 2D plotting primitives, with a few
exceptions that try to approximate 3D visuals with 2D elements.
Makie is built around the idea of a reactive workflow using Observables.jl. Observables are
wrappers for arbitrary objects which can trigger actions when their content is changed. Makie’s
plotting functions all accept observables as input arguments in addition to normal datatypes
like numbers or arrays. If a plotted observable changes, this is reflected immediately in the
display. Observables can be chained together, so that changes to many plot objects can
flow from a few steering observables. A common example is a single time observable, which
multiple visualizations depend on simultaneously. The observable approach frees the user from
having to update plot objects manually to achieve interactive visualizations, which is usually
required in most other plotting software. Makie also offers a range of GUI elements such as
sliders, buttons and menus, which seamlessly fit into the observable workflow. For example, a
slider over an integer range can be used directly to pick a 2D slice from a 3D dataset, like an
fMRI image. This can then be plotted using a heatmap, and will update whenever the slider
or 3D data are changed.
A common problem when creating figures for publication is that multiple elements in the figure
are overlapping, leaving too much empty space, or simply cannot be placed exactly where the
user wants without a lot of trial and error. To alleviate these issues, Makie has a powerful
layout system, which makes it easy to build up very flexible and complex figures without a
lot of boilerplate setup. Each figure has a top-level grid layout, in which layoutable objects or
further nested grid layouts can be placed at arbitrary positions. Grid layouts are built around
the assumption that objects like axes usually have an inner important area, which is what
other objects should be aligned with, and outer decorations which are visually less important
and are treated as part of the gap between rows and columns. This avoids the well-known
issue of incorrectly aligned axes between subplots, as they are not aligned along their outer
bounding boxes, which depend on unpredictable things like exact tick label lengths, but their
visually leading lines, the axis spines. In other plotting software, it is a common issue to place
a legend not inside or outside a single axis, but centered below multiple facets or in an entirely
different position. In Makie, objects like legends or colorbars are not tied to specific axes and
can therefore be placed wherever the user desires. Flexible colorbar or legend placement is a
common wish but still surprisingly hard to achieve in many plotting packages, which require
manual specification of precise bounding box coordinates for such cases. This often leads to
a cycle of readjustments whenever any other figure parameters change. In Makie, the layout
algorithm guarantees that no other objects collide or overlap, which can otherwise be the
cause for long-winded and non-reproducible sessions in image editing software. Finally, grid
layouts can be nested to arbitrary depths, which means that multiple different subfigures can
be combined easily by assembling their top-level layouts into a new parent layout.
Its ability to build responsive data visualizations with complex but clear layouts makes Maki
e.jl suitable for a wide range of work with high demands regarding both performance and
aesthetics.

Danisch et al., (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
https://doi.org/10.21105/joss.03349

4

https://doi.org/10.21105/joss.03349

Acknowledgements

S.D. has been supported by the German Federal Ministry of Education and Research, grant
number 01IS10S27 2020, as well as NSF Grant OAC-1835443. The Makie project is glad
to have an enthusiastic community that has helped us to improve a lot over the years. The
authors want to thank everybody who has opened issues, reported bugs, contributed ideas or
code and has supported us in driving Makie.jl forward.

References

Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic
language for technical computing. arXiv Preprint arXiv:1209.5145.

Breloff, T. (2021). Plots.jl (Version v1.16.3) [Computer software]. Zenodo. https://doi.org/
10.5281/zenodo.4907285

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Annals of the History of
Computing, 9(03), 90–95.

Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics,
3(2), 180–185.

Danisch et al., (2021). Makie.jl: Flexible high-performance data visualization for Julia. Journal of Open Source Software, 6(65), 3349.
https://doi.org/10.21105/joss.03349

5

https://doi.org/10.5281/zenodo.4907285
https://doi.org/10.5281/zenodo.4907285
https://doi.org/10.21105/joss.03349

	Summary
	Statement of need
	Example
	Overview
	Acknowledgements
	References

