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Summary
Survey sampling techniques are used in various fields to obtain information about a large
population by studying a fraction of its elements. As a result, it helps produce a significant
portion of the official statistics by national governments and international organizations. For
example, the Demographic and Health Survey (DHS) and the Multiple Cluster Indicator Survey
(MICS) have been collecting demographic and health indicators for more than 35 years and
25 years respectively in over 100 countries. DHS and MICS are two of the primary sources of
data for tracking the progress towards achieving the Sustainable Development Goals (SDGs).
Similarly, numerous political and socio-economic branches of society rely on survey sampling
to estimate the characteristics of populations of interest.
Until the initiation of samplics, Python did not have a library for analyzing complex survey
samples similar to the R survey package (Lumley, 2004) and several commercial software
such as SAS, SPSS, and Stata. samplics is a Python package developed to provide a
comprehensive set of APIs to select random samples, adjust sample weights, produce design-
based survey estimates, and predict small area parameters.

Statement of Need
samplics aims at providing a comprehensive statistical package for analyzing survey sample
data. The primary target audiences are survey statisticians and other data analysts working
with sample data obtained from complex survey designs. Data specialists can use this package
to produce, analyze, and use official statistics. It also can help teach statistical concepts given
the wide use of Python in Education and the simplicity of the samplics APIs.
When designing a survey, samplics can calculate sample sizes by stratum based on expected
proportions and level of precision for the indicator of interest as well as measures of the
complexity of the design such as survey design effects. After sample sizes are determined, samp
lics can calculate selection probabilities according to the sample selection strategy. To ensure
the representativeness of the random sample, samplics will compute design weights and
adjust them for non-response, post-stratification, and calibration. samplics provides Taylor-
based and replication-based techniques for calculating population parameter estimates and
associated measures of uncertainty. Finally, samplics has a small area estimation subpackage
that can predict small area parameters. Note that samplics can be used independently for
any of the steps described in the paragraph.
The sections below provide more details on the survey sampling techniques implemented in
samplics.
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Survey Sampling Techniques
In large-scale surveys, often complex random mechanisms are used to select samples. Esti-
mations obtained from such samples must reflect the complexity of the random mechanism
to ensure correct approximations of the population parameters by sample estimates (Cochran,
1977), (Kish, 1965), and (Lohr, 2010). For Python users, samplics provides a comprehensive
ecosystem of survey sampling techniques.

Sample Selection
The sample selection mechanism, a fundamental aspect of survey sampling, guides the sta-
tistical techniques employed to ensure the representativeness of the sample. In samplics,
the focus is on random sampling techniques where units in the target population have a
known probability of inclusion in the sample. let us assume that the target population has
N units, and let us note πi, the probability of unit i to be included in the sample. That is
P (Ii = 1) = πi, where Ii indicates whether unit i was included or not in the sample. The
sample selection techniques implemented in samplics can be viewed as the combination of
three key concepts: selection probability, stratification, and clustering. SRS results in an
equal probability of selection for all sampling units, P (Ii = 1) = π. Stratification is a tech-
nique that consists of dividing the target population into m partitions, and sample selection is
performed independently in each partition called stratum. Stratification is commonly used to
divide the population, hence the sample, into homogeneous groups, e.g., income class, gender,
ethnic group, etc. But it can also be used to control sample sizes by stratum; for example,
governments often use stratification to ensure proper coverage of geographical administrative
entities in the sample. Clustering is useful when a sample frame is unavailable for the units
of interest or the operational cost of directly selecting the units and collecting the data is too
high. In cluster sampling design, units of interest are grouped into clusters, and a sample
of clusters is selected first (one-stage cluster sampling). Clustering can be done at multiple
levels resulting in two-stage (or more) cluster sampling designs. Probability proportional to
size (PPS) methods, e.g., Systematic, Brewer’s method, Hanurav-Vijayan method, Murphy’s
method, and Rao-Sampford’s method, are commonly used to select the clusters (Brewer &
Hanif, 1983). Generally, cluster sampling leads to unequal probabilities of inclusion of sample
units.

Sample Weighting
Sample weighting is the main mechanism used in surveys to formalize the representativeness
of the sample. In complex surveys, sample weighting is composed of two main steps. First,
the design (or base) weights are calculated as the inverse of the selection probabilities. Let
us assume that πi is the final selection probability for unit i in the sample. Hence, di = 1

πi
,

where di is the design weight associated with unit i and can be interpreted as the average
number of units in the target population represented by i including itself. Second, the design
weights are adjusted to compensate for distortions due to shortcomings of the sample design
implementation. Often, the initial weight adjustment corrects for nonresponse. This adjust-
ment consists of defining response classes, then inflating the sample weights within response
classes to compensate for the loss of sampled units due to nonresponse. In complex surveys,
it is common to perform multiple sample weight adjustments. Hence, within a response class,
the adjusted sample weights can be obtained as follows:

wi = di ∗
K∏

k=1

ak,

where ak is the adjustment factor for step k. When reliable auxiliary information is available
at the population level, poststratification and calibration can be used to adjust the sample
weights. samplics also computes replicate weights, i.e., balanced repeated replication (BRR),
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bootstrap, and jackknife, often used to estimate complex parameters such as quantiles. (Val-
liant & Dever, 2018) provides a step-by-step guide for calculating sample weights for complex
sampling designs.

Sample Estimation
As mentioned above, estimation of population parameters e.g., total, mean, median, coef-
ficient of correlation, regression coefficients, etc., is one of the main objectives of surveys
sampling. The sample weight is the primary mechanism for generalizing the sample estimate
to approximate the equivalent population parameter. Let us consider the population parame-
ter, total, defined as Y =

∑H
h=1

∑Nh

i=1

∑Mhi

j=1 whijyhij , where H is the number of strata, Nh

is the number of primary sampling units (PSUs) in the population from stratum h and Mhj

is the number of units from PSU i in stratum h. It follows that the sample estimate of the
total is defined as

Ŷ =

H∑
h=1

nh∑
i=1

mhi∑
j=1

whijyhijIhij ,

where nh is the number of PSUs in the sample from stratum h and mhj is the number of
units in the sample from PSU i in stratum h. Ihij denotes the inclusion status of unit hij
to the sample i.e., Ihij = 1 if unit hij is included in the sample otherwise Ihij = 0. The
uncertainty estimation of the sample estimate must reflect the sampling mechanism and the
weight adjustments. samplics provides two main frameworks for computing uncertainties,
linearization (Taylor series) and replication.
Using the Taylor series method, the variance of the total is estimated as

V̂ (Ŷ ) =

H∑
h=1

nh(1− fh)

nh − 1

nh∑
i=1

(yhi. − ȳh..)
2,

where yhi. =
∑mhi

j=1 whijyhij , ȳh.. =
∑nh

i=1 yhi./nh, and fh is the sampling rate for the first
stage from stratum h. The formula can be extended to the two-stage sampling design where
second stage clusters or secondary sampling units (SSUs) are randomly selected from the
PSUs prior to the selection of final sample units within selected SSUs. Under the two-stage
sampling design, the Taylor series variance estimate of the total is

V̂ (Ŷ ) =

H∑
h=1

nh(1− fh)

nh − 1

nh∑
i=1

(yhi. − ȳh..)
2 +

H∑
h=1

fh

nh∑
i=1

(1− fhi)
mhi

mhi − 1

mhi∑
j=1

(yhij. − ȳhi..)
2,

where Ŷ =
∑H

h=1

∑Nh

i=1

∑Mhi

j=1

∑
k=1 whijkyhijIhijk, yhij. =

∑mhij

k=1 whijkyhijk, ȳhi.. =∑mhi

j=1 yhij./mhi, and fhi is the sampling rate for the second stage of sampling from PSU
i in stratum h. The variance estimation of the total can be extended to other popula-
tion parameters that are functions of the sample weight. For example, the variance es-
timates of the mean and ratio are obtained by replacing yhijk by (yhijk − ˆ̄Y )/Ŵ and
(yhijk − R̂xhijk)/X̂, respectively, where ˆ̄Y = Ŷ /Ŵ , Ŵ =

∑H
h=1

∑Nh

i=1

∑Mhi

j=1

∑
k=1 whijk,

X̂ =
∑H

h=1

∑Nh

i=1

∑Mhi

j=1

∑
k=1 xhijk and R̂ = Ŷ /X̂. Furthermore, the variance estimators in

this section are extensible to domain analysis.
Suppose that θ is the population parameter of interest. Under the replication framework,
multiple replicates, say R, of the sample are drawn following a given selection scheme (Efron
& Tibshirani, 1994) and (Wolter, 2007). For each replicate, a set of replicate weights is
constructed by multiplying the sample weights by an adjustement factor ahi. The resulting
weights, called the replicate weights, are then used to obtain the R replicate estimates of the

Diallo, M. S., (2021). samplics: a Python Package for selecting, weighting and analyzing data from complex sampling designs.. Journal of
Open Source Software, 6(68), 3376. https://doi.org/10.21105/joss.03376

3

https://doi.org/10.21105/joss.03376


population parameter i.e. θ̂(r), r = 1, ..., R. The estimate of the variance of θ̂ is then given by

V̂ (θ̂) =

R∑
r=1

cr(θ̂(r) − θ̄(.))
2,

where θ̄(.) = 1
R

∑R
r=1 θ̂(r). Both cr and ahi are specific to the replication method.

For Bootstrap, we have cr = 1/R and ahi = nh

nh−1m
∗
hi, where m∗

hi is the number of times
PSU hi was resampled. The replication factor cr is the same across the strata, however the
weight adjustment factors ahi are stratum specific.
For balanced repeated replication (BRR) with Fay, we have

cr = 1
R(1−f2) and ahi =

{
f if Hd(hi) = −1

2− f if Hd(hi) = 1
,

where Hd is the Hadarmard matrix. f = 0 corresponds to the default BRR method without
the Fay adjustment. A Hadamard matrix is a square matrix whose entries are either +1 or −1
and whose rows are mutually orthogonal. In the case of BRR-Fay, both the replication factor
cr and the weight adjustment factor ahi are constant across the strata.
For Jackknife (delete-one), we have

cr = nh′−1
nh′

and ahi =


nh′

nh′−1 if h′ = h and i not dropped
0 if h′ = h and i dropped
1 if h′ ̸= h

.

This formula is easily generalizable to the non stratified design (H = 1) by replacing nh′ by
n and dropping the case h′ ̸= h. The replication factor cr is stratum specific in the case of
Jackknife, which allows a finite-population correction by stratum.

Small Area Estimation (SAE)
When the sample size is insufficient to produce reliable/stable domain level estimates, SAE
techniques model the output variable of interest and produce domain level estimates. These
domains are referred to as small areas. For the most part, the SAE models are applications
of mixed models, see (McCulloch et al., 2008) and (Rao & Molina, 2015) for more details
on mixed models. Mixed models allow accounting for the between-area variations by using
random area-specific effects and the auxiliary variables contribution through the fixed effects.
Small Area Estimation models are generally classified into two classes: the Area-level and the
Unit-level models (Rao & Molina, 2015).

Area-level Model
As mentioned above, the Areal-level approach models the variables of interest using known
auxiliary information at some aggregated level(s). A common representation of the basic
Area-level model is

θ̂_d = xTd ud + ed, d = 1, ...,m,

where ud iid∼ N(0, σ2
u) and ed

iid∼ N(0, ψd) are independent. The sampling variance ψd is
assumed to be known; in a real survey this quantity is unknown and must be estimated, then
treated as known for the purpose of deriving the estimates. Under the basic Area-level model,
the best predictor (best in the sense of minimizing the mean squared error)) of θ is

θ̂Bd = (1−Bd)θ̂_d+BdxTd β̃ d = 1, ...,m,
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where Bd = ψd/(σ
2
u+ψd) and β̃ is the best linear unbiased estimator of β. The empirical best

(EB), or empirical Bayes, predictor θ̂EB
d is obtained by replacing the unknown parameter in the

expression of θ̂Bd by their estimators. The parameters of the model, β and σ2
u are estimated

using method of moment (MOM), maximum likelihood (ML), restricted maximum likelihood
(REML), or other suitable techniques. The EB estimator is a weighted average of the survey
(direct) estimator θ̂d and the regression predictor xTd β̃ where the weight is B̂d = ψd/(σ̂

2
u+ψd).

Unit-level model
The Unit-level models fit the data at the atomic individual unit level. The basic Unit-level
model can be formally defined as follows:

Ydj = xTdjβ + ud + edj , j = 1, ..., Nd, d = 1, ...,m,

where ud iid∼ N(0, σ2
u) and edj

iid∼ N(0, σ2
e) are independent random normal variables, xdj is

the vector of auxiliary variables, d designates the small area and j designates the the unit
within the small-area d. The best linear unbiased predictor (BLUP) estimator of the small
area mean θd = X̂T

d β + ud is

θ̂Bd = X̄T
d β̃ + γd(ȳd − x̄Td β̃)

where γd =
σ2
u

σ2
e+ndσ2

u
, the estimator β̃ is the best linear unbiased estimator of β, and nd is

the sample size for small area d. The empirical best linear predictor, θ̂EB
d , is obtained by

replacing the model parameters by their estimators in the expression of θ̂Bd . (Elbers et al.,
2003) extends the basic Unit-level model by relaxing the normal distribution of the errors
with an empirical semi-parametric model. This model has been used by the World Bank to
estimate small area poverty indices. Furthermore, (Molina & Rao, 2010) provide a parametric
approach for estimating complex small area parameters such as poverty indices.
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