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Summary

The name of this software, TsgFEM, is suggested to be pronounced as Tenseg FEM. The
purpose of this package is to facilitate the analysis of statics and dynamics of any tensegrity
structures. The software allows one to perform topology design, statics, and dynamic FEM
simulation of any tensegrity systems.

This software allows one to do the following studies but is not limited to the listed items.
Topology design:
1. Modeling any tensegrity structures by nodal coordinates and the node's connectivity
information.
2. Specifying the constraints of nodal coordinates and grouping structure members and
forcing them to have the same force densities.
Statics:

1. Conducting structure equilibrium configuration, pre-stress design, and stiffness studies.
2. Performing pre-stress and mechanism modes analysis.

3. Checking stiffness, stability, and robustness in terms of pre-stress, materials, and
geometric information of the structure.

4. Conducting studies on form-finding of tensegrity systems.
5. Simulating the forced motion of structures.

6. Studying the feasibility of pseudo-static deployment trajectories.
Dynamics:
1. Rigid body dynamics with acceptable errors. This is achieved by setting relatively high

stiffness for bars in the dynamics simulation.

2. FEM dynamics simulation with elastic or plastic deformations in the presence of various
kinds of boundary conditions, such as fixing any nodes in any direction, applying static
or dynamic external forces (i.e., gravitational force, some specified forces, or arbitrary
seismic vibrations).

3. Modal analysis, including natural frequency and corresponding modes.

4. An interface towards structural control by a compact state-space form of a linear model.
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The governing equations of the dynamics are derived based on the Lagrangian method with a
nodal coordinate vector as the variable and given in an explicit form (Ma et al., 2022). The
dynamics ordinary differential equation is solved by ode4 to simulate the dynamics of any
complexity tensegrity structure. By neglecting the time derivatives terms, one can get the
statics equations. The statics equation is solved by a modified Newton method to guarantee
the result converges to a stable equilibrium configuration. The software allows solving for the
minimum mass subject to buckling and yielding failures of structure members by optimizing
the cross-sectional area in the strings and bars in the presence of any external forces (M. Chen
& Skelton, 2020). The minimal mass problem is a constraint nonlinear optimization one in
terms of the force densities in the structure members. The nonlinear optimization problem is
solved by the Matlab function fmincon. We also provide a detailed user manual and strongly
suggest beginners follow the descriptions step by step. TsgFEM provides a set of unit test and
demonstration examples. The unit tests and accuracy discussion is given in the last section of
the user manual.

Motivation and Introduction

Tensegrity is a coined word by Buckminister Fuller (Fuller, 1982) for the art form created
by loganson (1921) and Snelson (1948) (Lalvani, 1996) to represent a stable network of
compressive members (bars/struts) and tensile members (strings/cables) (M. Chen & Skelton,
2020). From the definition, it is straightforward to see that the fundamental property of the
tensegrity is that all the bars and strings are axially loaded. Since the bars and strings are best
in taking compression and tension and there is no material bending, the structure mass can be
greatly reduced. Indeed, biological structures also indicate that tensegrity concepts yield the
most efficient structures. For example, the bones, muscles, and elbows of animals and humans
are tensegrity models. Wang et al. found that microtubules and microfilaments in the living
cells work as compressive and tensile members to change the traction of the cell surfaces (N.
Wang et al., 2001). Simmons et al. showed that the DNA bundles are consistent with tensegrity
prism (Lied| et al., 2010). After decades of study, many lightweight structures have been
redesigned by the tensegrity paradigm. For example, Skelton and de Oliveira proved that T-Bar
and D-Bar structures require less mass than a signal rod in taking compressive buckling load
(Skelton & Oliveira, 2009). Ma et al. showed a mass efficient tensegrity cantilever structure
subject to yield and buckling constraints (Ma et al., 2020). Barbarigos et al. designed and
analyzed a lightweight pedestrian bridge (Rhode-Barbarigos et al., 2010). And many space
applications are employing tensegrity solutions, for example, lightweight space habitat (M.
Chen et al., 2021b), deployable lunar towers for space mining (M. Chen et al., 2021a), and
planetary landers (Luo & Liu, 2017; Sabelhaus et al., 2015). Moreover, the many advantages
of tensegrity have also attracted researchers to find new ways to design soft robotics, i.e.,
six-bar tensegrity robot (Booth et al., 2020; K. Wang et al., 2020), robotic spine (Sabelhaus
et al., 2020), morphing wings (M. Chen et al., 2020), robotic fish (B. Chen & Jiang, 2019),
debris capturing robot (Feng et al., 2021). The statics and dynamics analysis of tensegrity
structures is essential to get insight into the structure properties.

Assumptions

Based on the following assumptions, the FEM equations for the statics and dynamics of any
tensegrity structures are formulated:

1. All the structural members are axially loaded and are connected by frictionless ball joints.
2. The structural members are allowed to have elastic or plastic deformation.

3. The rotation of the structure member along its longitudinal axis is neglected.
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4. Each structural member is homogeneous along its length and of an equal cross-section.
Thus, the mass of each structural member is distributed uniformly along its length.

5. A string can never push along its length; tension in the string is substituted to zero.
Based on the FEM and Lagrangian methods with nodal vectors as the generalized
coordinates given in (M. Chen & Skelton, 2020; Ma et al., 2022), we developed TsgFEM
(Tensegrity Finite Element Method).

Statement of need

For the FEM analysis for tensegrity structures, little research has been conducted. For example,
Zogoul et al. conducted a static study for a tensegrity bridge by FEM (Zgoul et al., 2012).
Jensen et al. showed the finite element analysis of tensegrity structures in offshore aquaculture
installations by ABAQUS (Jensen et al., 2007). Kan et al. formulated the dynamics of
clustered tensegrity structures by FEM (Kan et al., 2018). However, most of these analyses
use commercial software or assume the structure members are elastic. Few software packages
have been developed for the analysis of tensegrity statics and dynamics. For example, STEDY
(Tadiparthi et al., 2019) is a package for conducting tensegrity dynamics with rigid bars
based on the Lagrangian method. MOTES (Goyal et al., 2019) is software for the analysis of
both statics and dynamics with rigid bars and linear elastic strings. Both of them are rigid
body dynamics and developed in non-minimum Cartesian coordinates. However, for many
applications, the elastic or plastic deformation of structure members cannot be neglected. It is
possible to do the FEM analysis by commercial software, i.e., ANSYS and ABAQUS, but the
licenses are expensive, and the modeling and setups require much experience. To this end, we
derive a closed-form dynamics equation based on Lagrangian’'s method with a nodal vector as
the generalized coordinate, allowing the user to perform simulations for bars and strings with
any given strain-stress properties. The proposed dynamics equation is in a compact form.

The developed software is capable of dealing with large deformation for structures with elastic
or plastic materials. The results of the software are compared with analytical solutions as well
as commercial software ANSYS. In fact, this software also provides an interface to ANSYS.
That is, one can modify the settings in the example source codes based on the simulation needs
and run the codes. This software can generate a text file that allows users to run the simulation
in ANSYS automatically by using the APDL (Ansys Parametric Design Language) interface.
The software has been used for the design and analysis of various tensegrity structures, i.e.,
tensegrity lunar tower, tensegrity morphing wings, tensegrity cable domes, tensegrity lander,
and tensegrity dolphin, where we integrate structure, control design, and signal processing to
get the required performance and control law.
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