
PERFORM: A Python package for developing
reduced-order models for reacting fluid flows
Christopher R. Wentland 1 and Karthik Duraisamy1

1 Department of Aerospace Engineering, University of Michigan
DOI: 10.21105/joss.03428

Software
• Review
• Repository
• Archive

Editor: Kyle Niemeyer
Reviewers:

• @Himscipy
• @kyleniemeyer

Submitted: 13 April 2021
Published: 08 November 2022

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Combusting fluid flows are common in a variety of engineering systems, driving the gas
turbines that generate our electricity, providing the thrust for rocket engines, and powering
our cars and airplanes. However, the use of computational fluid dynamics (CFD) to simulate
these phenomena is practically impossible for time-critical, many-query applications such as
parametric design, failure prediction, and uncertainty quantification. Data-driven reduced-order
models (ROMs) have shown potential for vastly reducing the computational cost of evaluating
CFD models. In general, ROMs learn a low-dimensional representation of the high-dimensional
system state (which may be as many as tens or hundreds of millions of degrees of freedom)
and evolve this low-dimensional state in time at a much lower computational cost. Research on
applying ROMs to practical reacting flows is currently in its early stages, and initial results have
shown that standard ROM techniques may be ineffective for this class of problems (Huang et
al., 2018; Huang & Duraisamy, 2019). The dearth of research on this topic may be attributed
to the complexity of reacting flow modeling combined with a lack of approachable open-source
libraries for combustion CFD.

The Prototyping Environment for Reacting Flow Order Reduction Methods (PERFORM) is a
Python packaged designed to allow rapid implementation, testing, and evaluation of ROMs
for one-dimensional reacting flows. It combines a robust compressible reacting flow solver
with a modular framework for deploying new ROM methods. This eliminates much of the
software development difficulty for ROM researchers who may have little experience with
combustion modeling or low-level programming languages, allowing them to perform research
with a challenging, practical class of problems.

Statement of need
The ROM community spans many scientific disciplines, and efforts to build and release tools for
ROM research and applications have been commensurately broad. Some open-source projects
provide implementations of standard ROM methods within a specific flow solver (Grunloh et
al., 2021; Hess & Rozza, 2020; Hesthaven et al., 2016; Stabile et al., 2017; Stabile & Rozza,
2018). Other libraries have been developed to provide generic interfaces with dynamical system
solvers and supply ROM capabilities, most notably Pressio (Rizzi et al., 2020) and pyMOR
(Milk et al., 2016). These libraries allow CFD practitioners to test a suite of standard ROM
methods with an existing CFD solver. However, these libraries may not be useful to ROM
method developers, who may find it difficult and prohibitively time-consuming to implement
new ROM methods in a very complex software environment or in a low-level programming
language. Further, those who wish to test ROM methods on combustion problems may not
have access to a robust and efficient combustion CFD solver (many are closed-source) or the
know-how to use general open-source solvers such as OpenFOAM.

PERFORM aims to ease some of these difficulties by packaging a one-dimensional compressible

Wentland, & Duraisamy. (2022). PERFORM: A Python package for developing reduced-order models for reacting fluid flows. Journal of Open
Source Software, 7(79), 3428. https://doi.org/10.21105/joss.03428.

1

https://orcid.org/0000-0002-8500-569X
https://doi.org/10.21105/joss.03428
https://github.com/openjournals/joss-reviews/issues/3428
https://github.com/cwentland0/perform
https://doi.org/10.5281/zenodo.7302346
https://niemeyer-research-group.github.io
https://orcid.org/0000-0003-4425-7097
https://github.com/Himscipy
https://github.com/kyleniemeyer
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03428


reacting flow solver with a flexible object-oriented ROM framework. It trades flexibility
of application for flexibility of ROM development, focusing on a single class of problems
while making the code extremely accessible to ROM researchers of all backgrounds. For
one, PERFORM is written purely in Python, a widely-used, easily-learned, and flexible high-
level programming language. Additionally, ROMs in PERFORM are structured within a
class hierarchy which maximizes code re-use and minimizes developer effort in implementing
variations of ROM methods.

In most cases, only a basic understanding of Python classes and NumPy/SciPy operations is
required to implement new ROM methods. Further, all elements of the underlying reacting
flow solver are separated from the ROM classes, ensuring that ROM method developers do
not need to interact with the solver routines. As such, the learning curve for understanding
PERFORM’s ROM mechanics and implementing new ROM methods is relatively gentle. Note
that although pyMOR (Milk et al., 2016) similarly provides a pure Python ROM framework,
it aims to be far more generalizable to any class of problems, be compatible with a host of
low-level computational and data handling libraries, and enable parallel computing. While this
makes pyMOR much more flexible and efficient, it can also make ROM prototyping and code
maintenance much more cumbersome.

PERFORM’s public repository comes with several benchmark cases which are ready to run
out-of-the-box. As will be discussed below, these benchmark cases address several of the
critical issues facing the broader ROM community, particularly the difficulty of propagating
transient flow features beyond the training data set and making accurate predictions in a
complex parameter space. We hope that by providing these benchmark cases, the community
can measure and compare ROM methods for a more challenging, yet manageable, class of
problems.

Features
PERFORM is designed with modularity and expansion in mind. Generic class interfaces are
provided to allow for the simple implementation of new gas models, reaction models, flux
schemes, time integration schemes, and boundary conditions. Generic class interfaces are
also provided for projection-based ROMs, linear trial spaces, and non-linear trial manifolds via
autoencoders. Beyond this, the solver comes with many standard accessories, such as restart
files, live visualizations of field and probe monitor data, and several useful pre-/post-processing
scripts.

At the time of submitting this paper, PERFORM is specifically equipped with the following
features:

• Solver
– calorically-perfect gas model
– irreversible finite-rate reaction model
– Roe flux difference scheme (Roe, 1981)
– several explicit Runge-Kutta time integration schemes
– implicit BDF time integration schemes, with or without dual time-stepping

(Venkateswaran & Merkle, 1995)
• ROMs

– linear Galerkin (explicit and implicit) (Rowley et al., 2004), LSPG (Carlberg et al.,
2017), and MP-LSVT (Huang et al., 2021) projection ROMs with gappy POD
hyper-reduction (Everson & Sirovich, 1995)

– non-linear Galerkin (explicit and implicit), LSPG (Lee & Carlberg, 2020), and
MP-LSVT projection ROMs via autoencoders

– generic interface to Keras (Chollet & others, 2015) neural network models

We are working to provide generic class interfaces for non-intrusive ROM methods and ROM
stabilization methods (e.g. closure, filtering, artificial viscosity). We are also implementing a

Wentland, & Duraisamy. (2022). PERFORM: A Python package for developing reduced-order models for reacting fluid flows. Journal of Open
Source Software, 7(79), 3428. https://doi.org/10.21105/joss.03428.

2

https://doi.org/10.21105/joss.03428


thermally-perfect gas model, reversible finite rate reaction model, and a generic interface for
PyTorch neural network models.

Applications
PERFORM was created within an ongoing US Air Force Office of Scientific Research Center of
Excellence collaboration between researchers from the University of Michigan, the University
of Texas at Austin, New York University, and Purdue University investigating ROMs for rocket
combustors. Many team members do not have intimate experience with combustion modeling,
and PERFORM was originally developed for internal use by those members to test novel
ROM methods on simplified combusting flows. Research using PERFORM has already been
published, in developing accurate and robust linearized ROMs (Rezaian et al., 2022) and
investigating true ROM predictivity via basis and hyper-reduction sampling adaptation (Uy et
al., 2022).

Recent community-wide discussions have begun encouraging ROM researchers to pursue
more practical fluid flow applications. This was synthesized in the “Data-driven Modeling
for Complex Fluid Physics” panel at the 2021 AIAA SciTech Forum, where leaders in the
ROM community discussed a general need to evaluate ROMs beyond the traditional “toy”
problems (e.g. 1D Burgers’, 2D lid-driven cavity). PERFORM was presented as a companion
code to this workshop, and provides several benchmark cases for use in future meetings of
the workshop. These benchmark cases include a Sod shock tube, a transient multi-species
contact surface (with and without artificial acoustic forcing), a stationary premixed flame (with
artificial acoustic forcing), and a transient premixed flame (with and without artificial acoustic
forcing). These benchmarks are intended to provide some cohesion for the ROM community
to address more complex, practical systems.

Acknowledgements
The authors acknowledge support from the US Air Force Office of Scientific Research through
the Center of Excellence Grant FA9550-17-1-0195 (Technical Monitors: Fariba Fahroo, Mitat
Birkan, Ramakanth Munipalli, Venkateswaran Sankaran).

We thank Nicholas Arnold-Medabalimi, Sahil Bhola, Cheng Huang, Ashish Nair, Bernardo
Pacini, and Elnaz Rezaian for their help in stress-testing PERFORM and providing valuable
discussion on its development.

References
Carlberg, K., Barone, M., & Antil, H. (2017). Galerkin v. least-squares Petrov–Galerkin

projection in nonlinear model reduction. Journal of Computational Physics, 330, 693–734.
https://doi.org/10.1016/j.jcp.2016.10.033

Chollet, F., & others. (2015). Keras. https://keras.io.

Everson, R., & Sirovich, L. (1995). Karhunen–Loeve procedure for gappy data. Journal of
the Optical Society of America A, 12(8), 1657–1664. https://doi.org/10.1364/JOSAA.12.
001657

Grunloh, T., Patel, A., Lin, C., Wilson, T., Calian, L., Simonovic, P., & Safdari, M. (2021). Ac-
celerateCFD Community Edition. https://github.com/IllinoisRocstar/AccelerateCFD_CE.

Hess, M., & Rozza, G. (2020). ITHACA-SEM - In real Time Highly Advanced Computational
Applications with Spectral Element Methods - Reduced Order Models for Nektar++.
https://github.com/mathLab/ITHACA-SEM.

Wentland, & Duraisamy. (2022). PERFORM: A Python package for developing reduced-order models for reacting fluid flows. Journal of Open
Source Software, 7(79), 3428. https://doi.org/10.21105/joss.03428.

3

https://doi.org/10.1016/j.jcp.2016.10.033
https://doi.org/10.1364/JOSAA.12.001657
https://doi.org/10.1364/JOSAA.12.001657
https://doi.org/10.21105/joss.03428


Hesthaven, J. S., Rozza, G., Stamm, B., & others. (2016). Certified reduced basis methods
for parametrized partial differential equations (Vol. 590). Springer. https://doi.org/10.
1007/978-3-319-22470-1

Huang, C., & Duraisamy, K. (2019). Investigation and improvement of robustness of reduced-
order models of reacting flow. AIAA Scitech Forum. https://doi.org/10.2514/6.2019-2012

Huang, C., Duraisamy, K., & Merkle, C. L. (2018). Challenges in reduced order modeling of
reacting flows. AIAA Propulsion and Energy Forum. https://doi.org/10.2514/6.2018-4675

Huang, C., Wentland, C. R., Duraisamy, K., & Merkle, C. (2021). Model reduction for
multi-scale transport problems using model-form preserving least-squares projections with
variable transformation. Journal of Computational Physics, 448. https://doi.org/10.1016/
j.jcp.2021.110742

Lee, K., & Carlberg, K. T. (2020). Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational Physics, 404.
https://doi.org/10.1016/j.jcp.2019.108973

Milk, R., Rave, S., & Schindler, F. (2016). pyMOR - generic algorithms and interfaces
for model order reduction. SIAM Journal on Scientific Computing, 38(5), S194–S216.
https://doi.org/10.1137/15M1026614

Rezaian, E., Huang, C., & Duraisamy, K. (2022). Non-intrusive balancing transformation of
highly stiff systems with lightly damped impulse response. Philosophical Transactions of
the Royal Society A, 380. https://doi.org/10.1098/rsta.2021.0202

Rizzi, F., Blonigan, P. J., & Carlberg, K. T. (2020). Pressio: Enabling projection-based model
reduction for large-scale nonlinear dynamical systems. arXiv. https://doi.org/10.48550/
arXiv.2003.07798

Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and differ-
ence schemes. Journal of Computational Physics, 43(2), 357–372. https:
//doi.org/10.1016/0021-9991(81)90128-5

Rowley, C. W., Colonius, T., & Murray, R. M. (2004). Model reduction for compressible flows
using POD and galerkin projection. Physica D, 189, 115–129. https://doi.org/10.1016/j.
physd.2003.03.001

Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., & Rozza, G. (2017). POD-Galerkin reduced
order methods for CFD using finite volume discretisation: vortex shedding around a
circular cylinder. Communications in Applied and Industrial Mathematics, 8(1), 210–236.
https://doi.org/10.1515/caim-2017-0011

Stabile, G., & Rozza, G. (2018). Finite volume POD-Galerkin stabilised reduced order
methods for the parametrised incompressible Navier-Stokes equations. Computers & Fluids.
https://doi.org/10.1016/j.compfluid.2018.01.035

Uy, W. I. T., Wentland, C. R., Huang, C., & Peherstorfer, B. (2022). Reduced models with
nonlinear approximations of latent dynamics for model premixed flame problems. arXiv.
https://doi.org/10.48550/arXiv.2209.06957

Venkateswaran, S., & Merkle, C. L. (1995). Dual time-stepping and preconditioning for
unsteady computations. 33rd Aerospace Sciences Meeting and Exhibit. https://doi.org/10.
2514/6.1995-78

Wentland, & Duraisamy. (2022). PERFORM: A Python package for developing reduced-order models for reacting fluid flows. Journal of Open
Source Software, 7(79), 3428. https://doi.org/10.21105/joss.03428.

4

https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.2514/6.2019-2012
https://doi.org/10.2514/6.2018-4675
https://doi.org/10.1016/j.jcp.2021.110742
https://doi.org/10.1016/j.jcp.2021.110742
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1137/15M1026614
https://doi.org/10.1098/rsta.2021.0202
https://doi.org/10.48550/arXiv.2003.07798
https://doi.org/10.48550/arXiv.2003.07798
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1515/caim-2017-0011
https://doi.org/10.1016/j.compfluid.2018.01.035
https://doi.org/10.48550/arXiv.2209.06957
https://doi.org/10.2514/6.1995-78
https://doi.org/10.2514/6.1995-78
https://doi.org/10.21105/joss.03428

	Summary
	Statement of need
	Features
	Applications
	Acknowledgements
	References

